Western Mathematics Exams

Mathematics Standard 2

SOLUTIONS

Multiple Choice Worked Solutions					
No	Working	Answer			
1	The shape is a sector and we want its area, so from the formula sheet the formula is $A = \frac{\theta}{360} \times \pi r^2$. The radius, $r = 24$ with an angle of 60°, so the calculation is $A = \frac{60}{360} \times \pi \times 24^2$	С			
2	Unordered selections of 3 from $10 = \frac{10 \times 9 \times 8}{3 \times 2 \times 1}$ = 120	Α			
3	Taxable income = $69000 - 1255$ = 67745 Income Tax = $3572 + (67745 - 37000) \times 0.325$ = $3572 + 30745 \times 0.325$ = $3572 + 9992.125$ = $\$13 564.13$ (nearest cent)	С			
4	A goes to D(12) and E(7) B goes to A(10) and C to B(8) $\begin{array}{c} & & \\ & &$	D			
5	$3ab - 3a(2a - 4b) - a^{2} = 3ab - 6a^{2} + 12ab - a^{2}$ $= 15ab - 7a^{2}$	D			

Western	Mathematics Exams - Standard	2 HSC Practice Paper 1 -	Solutions
6	$tan \ \angle WTK = \frac{230}{320}$ $\angle WTK = tan^{-1}\frac{230}{320}$ $= 36^{\circ}$ Bearing = 270 - 36 $= 234^{\circ}$		C
7	Looking down the interest column, t Int Rate May = $$1,242.95 \div 248 Int Rate June = $$1,342.43 \div 247 Increase in annual interest rate = 0.0	he interest amount increased in June 589.46 = 0.0050 (4 dec places) ,832.41 = 0.0054 (4 dec places) $004 \times 12 \times 100 = 0.5\%$ (1 dec places)	e. B ce)
8	One variable decreases as the other inegative. The data is grouped close to So - 0.95 is the most likely.	ncreases, so the correlation will be to the line, so the value will be close	A to -1.
9	Quarterly interest rate $=0.12 \div 4 =0.12$ After first year the investment $= 145$ After she added \$1 280 value $= 16 After second year the investment $=$	503 $50 \times (1.03)^4 = \$1\ 631.99$ $531.99 + \$1\ 280 = \$2\ 911.99$ $\$2\ 911.99 \times (1.03)^4 = \$3\ 277.47$	С
10	Area of the cloth = $30^2 = 900 \text{ cm}^2$ An area of $1 \text{ m}^2 = 100 \times 100 = 1$ Area of cloth = $\frac{900}{10000} = 0.09 \text{ m}^2$ Amount absorbed = $0.09 \times 5 = 0.43$	2 . 0 000 cm ² 5 L = 450 mL	В
11	Under the declining balance method percentage of the previous year's pri gradually lesser amounts each year. Graph C is a straight line depreciation	, each succeeding years price is a ce, which means the value goes dow Graph B indicates this. on and A and D are erratic amounts.	wn by
12	80% as a z score = $\frac{80 - 90}{5} = -2$.		Α
13	Both C and D have the correct shape index, but it should have a y intercept	for an exponential with a negative of tof 1, so only D is correct.	in the D

Western]	Mathematics Exams - S	tandard 2 HSC Practice Paper 1 -	Solutions
14		(6,15) $m = \frac{12}{6} = 2$ y int = 3 Equation: b = 2a + 3	Α
15	Network B is not spanning a Networks A and C include a loop. Only network D, is a spannin	s it does not include vertex L ll of the vertices, but also include a cycle or ng tree.	a D

2019 Trial Higher School Certificate Examination Mathematics Standard 2

Name _____ Teacher _____

Section I – Multiple Choice Answer Sheet

Allow about 25 minutes for this section

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		АO	В 🔴	C O	d O

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

				correct		
		A		в 🛋	C O	d O
1.	$_{\rm A}$ O	вО	с 🗢	DO		
2.	Α ●	в 〇	c \bigcirc	D		
3.	$A \bigcirc$	в 〇	с ●	D		
4.	$A \bigcirc$	в 〇	c 🔿	D 🗢		
5.	$A \bigcirc$	в 〇	с 🔿	D 🗢		
6.	$A \bigcirc$	в 〇	С 🔴	DO		
7.	$A \bigcirc$	В 🔴	c 🔿	DO		
8.	Α 🔴	В 🔿	с 🔿	DO		
9.	$A \bigcirc$	В 〇	С 🔴	DO		
10.	$A \bigcirc$	В 🔴	с 🔿	DO		
11.	A 🔿	В 🔴	с 🔿	DO		
12.	Α 🔴	В 🔿	с 🔿	DO		
13.	A ()	В 🔿	с 🔿	D 🔴		
14.	Α 🔴	В 🔿	с 🔿	DO		
15.		BO	C 🔿	D 🗢		

West	ern Mathematics Exams - Standard 2 HSC Practice Paper 1 -	Solutions			
Que	Question 21				
	Absolute Error = half of the smallest unit $(0.5 \text{ cm}) = 0.25 \text{ cm}$	2			
	$\% \text{ error} = \pm \frac{0.25}{12.5} \times 100$				
	$= \pm 2\%$				
Que	estion 22				
	Hourly earnings = $35 \times 19.5 = 682.50	2			
	Commission = $0.04 \times 16000 = 640				
	Total Earnings =\$ 682.50 + \$640 = \$ 1322.50				
Que	estion 23				
(a)	Mean = 42.5	1			
(b)	Standard deviation = 15.4	1			
Que	estion 24				
(a)	Time difference = $10 + 5 = 15$ hours So Sydney is 15 hours ahead.	1			
(b)	Sydney is 15 hours ahead of 6 am Wednesday 7th.	1			
	6 hours ahead of 6 am is 12 pm Wed.				
	9 hours more ahead is 9 pm on Wednesday 7 th .				
(c)	The time she leaves New York (Sydney time) is 9 pm Wednesday.	1			
	Time for flight is 20 hours, so 3 hours to midnight and 17 hours after				
	midnight so arrives at 5 pm Thursday 8th.				
Que	estion 25				
	24	3			
	16 35				
	32 59				
	25				
	Starting at P, shortest to R is 25 and to Q is 24, shortest to S is through R				
	25+10 = 35 then to T is through S $35+16 = 51$ and hence to U is through T				
	51 + 8 = 59				
	Or abbreviated to PRSTU.				
004	estion 26				
Zut	The heater is 2 000 watts which is 2 kw	2			
	It is run for $120 \times 8 = 960$ hours per year	2			
	Power used = $960 \times 2 = 1920$ kwh				
	Cost at \$0.30 per kwh = $1920 \times 0.3 = 576				

Que	stion 27	
(a)	$B = 2\pi \left(R + \frac{T}{2} \right) \times \frac{A}{360}$	1
	$B = 2\pi \left(60 + \frac{90}{2} \right) \times \frac{120}{360}$	
	$= 2\pi(60+45) \times \frac{120}{360}$	
	$= 2\pi(105) \times \frac{1}{3}$	
	$= 70\pi$	
	= 219.9114	
	= 220 (nearest whole number)	
(b)	$B = 2\pi \left(R + \frac{T}{2} \right) \times \frac{A}{360}$	2
	$55 = 2\pi \left(20 + \frac{30}{2}\right) \times \frac{A}{360}$	
	$55 = 2\pi(35) \times \frac{A}{360}$	
	$55 = 220 \times \frac{A}{360}$	
	$A = 55 \times \frac{360}{220}$	
	A = 90	
Que	stion 28	
(a)	(i) 6.6% pa $\% = \frac{6.6}{12} = 0.55\%$ per month.	1
	From table interest factor for 0.55% for 12 years (120 months) is 169.3267.	
	Future value = $450 \times 169.3267 = $76 \ 197$ (nearest dollar)	
(b)	(ii) 9.0% pa % = $\frac{9.0}{12}$ = 0.75% per month.	1
	Let <i>I</i> be the required interest factor	
	Then $500 \times I = 100000	
	$I = \frac{100000}{500} = 200$	
	From table, in the column for 0.75% the first interest factor to exceed 200 is for 123 months (200.9236),	
	So the minimum term is 10 years and 3 months	

West	ern Mathematics Exams - Standard 2 HSC Practice Paper 1 -	Solutions
Que	stion 32	
(a)	A minimum spanning tree	1
(b)	Using Prims Algorithm	2
	Select C as the first vertex (arbitrary as any other could be chosen) Highlight CF as lowest weight leaving C Highlight FE as lowest weight leaving the tree. Highlight CG as lowest weight leaving the tree. Highlight ED as lowest weight leaving the tree not creating a cycle. Every vertex is now included, so we have our minimum spanning tree Length of road to re-seal = $24 + 22 + 18 + 27 = 91$ km	
Que	stion 33	
	and of shild (in years) we shill does	2
	Dosage for child 1-12 = $\frac{\text{dge of child (in years)} \times \text{durf dose}}{\text{age of child (in years)} + 12}$ = $\frac{8 \times 15}{8 + 12}$ = $\frac{120}{20}$ = 6 mL	
Que	stion 34	
	area of cross section $= \pi \times 3^{-} = 28.3 \text{ m}^{-}$ volume $= 28.3 \times 16 = 452.4 \text{ m}^{3}$ <i>capacity</i> $= 452.4 \text{ kL}$ Number of 150 kL tanks $= \frac{452.4}{150} = 3.015$ 3 tanks could be filled	2
0114	stion 35	
(a)	From 19 calls the median is the 10th which is a 3 From lower 9 calls Q_L is 5th which is a 2. From upper 9 calls Q_U is 5th which is a 5. Interquartile range= 5 - 2 = 3.	1
(b)	A high score is an outlier if it is greater than $Q_3 + 1.5$ So 12 is an outlier.	1

West	ern Mathematics Exams - Standard 2 HSC Practice Paper 1 - S	Solutions
Que	stion 36	
	Measurement = 2.7cm from Parkes to Dubbo (answers from 2.5 to 2.7) 1cm = 25km So distance =2.7 x 25km = 67.5 radius (62.5 for 2.5 cm) $A = \pi r^2$ $= \pi \times 67.5^2$ $= 14314 \text{ km}^2$ (12272 if using 2.5)	2 Allow for different answers in measuring, due to printing differences,
Que	stion 37	
(a)	(i) Passes through (40, 480) and the origin, so $Gradient = m = \frac{480}{40} = 12$ C intercept = 0 Equation is $C = 12N$	1
(h)	Equation is $C = 12N$	2
	Plot the intercept and use gradient to obtian a second point. C 500^{-} 450^{-} 450^{-} 400^{-} 350^{-} 300^{-} 250^{-} 200^{-} 100^{-} 20^{-} 10^{-} 20^{-} 10^{-} 20^{-} 10^{-} 20^{-} 10^{-} 20^{-} 10^{-} 10^{-} 20^{-} 10^{-} 20^{-} 10^{-} 20^{-} 10^{-} 20^{-} 10^{-} 10^{-} 20^{-} 10^{-} 20^{-} 10^{-} 10^{-} 20^{-} 10^{-} 10^{-} 20^{-} 10^{-} 20^{-} 10^{-} 20^{-} 10^{-}	
(c)	(iii) Break even point is (25, 300) which means that when 25 widgets are sold the income equals the expenses, so if less than 25 widgets are sold, a loss is made, but for more, a profit is made.	1
Que	stion 38	
(a)	Total residents = 100 P(no prob and male) = $\frac{35}{100} = \frac{7}{20}$	1
(b)	Total females = 49	1
	P(no prob given female) = $\frac{25}{49}$	

West	ern Mathematics Exams - Standard 2 HSC Practice Paper 1 -	Solutions
Que	stion 39	
(a)	$BAC_{FFMAT} = \frac{10N - 7.5H}{1000}$	1
	5.5M	
	$= 10 \times 4 - 7.5 \times 2.5$	
	5.5×45	
	= 0.08585	
	$= 0.086 \ (2 \ d \ p)$	
	Which is more than 0.08	
(b)	BAC	1
, í	$Iime = \frac{1}{0.015}$	
	0.086	
	$=\frac{1}{0.015}$	
	= 5.73333	
	= 6 hours (nearest hour)	
Oue	stion 40	
(a)	(i) From calculator Mean = 46% and SD = 9% .	2
(4)		_
(b)	(ii) The evening half hour class has an SD of 15% so has the greatest	1
, í	variability.	
Que	stion 41	
(a)	5	1
	G Y F	
	The single energy d D magaza through f a dama as the damas is f	
(h)	I ne circle around B passes through 5 edges, so the degree is 5	1
(0)	Incorrect It is not disconnected as every vertex can be reached from any other vertex	
	It has only one loop, not 2, which is at D with weight 6	
	Correct	
	It is a directed network	
		1

West	ern Mathematics Exams - Standard 2 HSC Practice Paper 1 -	Solutions
Que	estion 42	
(a)	(i) 6% p.a. interest = 0.5% per month. So $r = 0.0050$ Ten years is 120 months, so $N = 120$ From table the factor is 90.0735.	1
	Monthly repayment = $\frac{65000}{90.0735}$ = \$721.63	
(b)	(ii) Total repaid (ten years) = $721.63 \times 120 = \$86\ 595.60$ Nine years is 108 months, so $N = 108$ From table the factor is $\$3.2934$. So $\$3.2934 \times \text{Monthly repayment} = 65000$ Monthly repayment $= \frac{65000}{\$3.2934}$ = \$780.37 Total repaid (nine years) = $780.37 \times 108 = \$84\ 279.96$ Amount of interest saved $=\$86\ 595.60-\$84\ 279.96$ $= \$2\ 315\ 64$	2
Que	estion 43	
(a)	Each trapezoid has a height of $\frac{8}{4} = 2$ metres Area = $\frac{2}{2}(4+5) + \frac{2}{2}(5+7) + \frac{2}{2}(7+4) + \frac{2}{2}(4+5)$ = 9 + 12 + 11 + 9 = 41 m ²	2
(b)	Since depth is the same, it is a prism. V = A h $= 41 \times 1.5$ $= 61.5$ "m"^3 Capacity = 61.5 × 1000 = 61500 litres	1

West	ern Mathematics Exams - Standard 2 HSC Practice Paper 1 -	Solutions
Que	estion 44	
(a)	Only 25 can flow into V so the maximum outflow is 25, but the pipe has a capacity of 30 so the excess flow is $30 - 25 = 5$ Gigalitres.	1
(b)	The values of the various cuts are shown before reducing the flow to the actual amounts. So the maximum flow is the minimum cut of 140 Gigalitres per hour If the cuts were done after reducing the flows, all cuts would be 140. 155 165 160 170 170 160 170 170 160 170	2
(c)	The "theoretical" maximum flow from the diagram is 170 through the last 3 pipes.	1
	If UV were increased by 5 to 30 it would bring VY to maximum capacity	
	To allow UV to receive the extra 5 and to bring UW to its capacity of 15, SU	
	would need to be increased by 20 to 80	
	To allow TX to reach its capacity ST could be increased by 10 to 90	
	This achieves a maximum flow of 170	

West	ern Mathematics Exams - Standard 2 HSC Practice Paper 1 -	Solutions		
Question 45				
(a)	$\angle DOC = 260^{\circ} - 210^{\circ} = 50^{\circ}$	1		
(b)	$\angle AOB = 95^{\circ}$	1		
	Area $= \frac{1}{2} ab \sin O$			
	$=\frac{1}{2}\times250\times500\times\sin95^{\circ}$			
	= 62262			
	$= 62\ 000\ m^2$			
	= 6.2 ha			
(c)	$\angle BOC = 210 - 95 = 115^{\circ}$	1		
	$BC^2 = 250^2 + 380^2 - 2 \times 250 \times 380 \times \cos 115^\circ$			
	= 287197			
	BC = 536 m			
(d)	In $\triangle DOE$	2		
	$\cos 4 DOF = \frac{550^2 + 450^2 - 180^2}{1000}$			
	$2 \times 550 \times 450$			
	= 0.954747			
	$\angle DOE = cos^{-1}(0.954747)$			
	$= 17^{\circ}$ (nearest degree)			
	$bearing = 260^\circ + 17^\circ$			
	$= 277^{\circ}$			

West	ern Mathematics Exams - Standard 2 HSC Practice Paper 1 -	Solutions
Que	stion 46	
(a)	f	1
	$\begin{array}{c} 25 \\ 24 \\ 23 \\ 22 \\ 21 \\ 20 \\ 130 \\ 140 \\ 150 \\ 160 \\ 170 \\ 180 \\$	
(1.)	Plot point E on the graph.	1
(b)	A correlation approaching I means that as one quantity increases, so does the other in a close linear relationship	1
(c)	The line drawn on the graph	1
(d)	Draw a right triangle	2
	Rise = 23.6 - 21.6 = 2 Run = 160 - 140 = 20 Gradient = $\frac{2}{20} = \frac{1}{10}$	Answers could be slightly different depending on the line of best fit
	Y intercept = 20.1 Equation is $y = \frac{1}{10}x + 20.1$ $f = \frac{1}{10}a + 20.1$	
Que	stion 47	
(a)	Daily interest rate $=\frac{18.5}{365}=0.05\%$ per day	1
(b)	Amount owing on 1 st July = 2500 - 1200 = 1300. So $PV = 1300$ There are 31 days in July so $n = 31$ $r = 0.05 \div 100 = 0.0005$ $FV = PV(1 + r)^n$ New balance = 1300 × (1.0005) ³¹ = \$1320.58 <i>OR</i> \$1320.30 if using the rounded value of 1.0005	2
(c)	Interest = $1320.58 - 1300 = 20.58 (or \$20.30)	1