SYDNEY GRAMMAR SCHOOL

TRIAL EXAMINATION 2023

FORM VI CHEMISTRY

STRUCTURE OF PAPER

SECTION I

A: Multiple Choice 20 marks

Allow about 30 minutes for this section.

SECTION II 80 marks

Allow about 2 hours and 30 minutes for this section.

EXAMINATION

DATE: Mon 14 August 8.40am

DURATION: 3 hours + 5 minutes reading time

MARKS: 100

CHECKLIST

Each boy should have the following:

- 1 Examination Paper (data sheet attached on back)
- □ 1 Multiple-Choice Answer Sheet

EXAM INSTRUCTIONS

- Remove the centre staple and hand in all parts of the paper in a neat bundle.
- WRITE YOUR CANDIDATE NUMBER IN THE SPACE PROVIDED AT THE TOP OF EACH PAGE WHERE INDICATED ON PAGE 11, 17, 23 and 27.

MIC: MTK

Sydney Grammar School	Form VI Chemistry	2023 Trial Examination
	LEFT BLANK INTENTIONALLY	

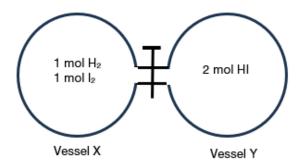
SECTION I: MULTIPLE CHOICE (20 marks)

Attempt ALL Questions
Use the Multiple-Choice Answer Sheet.

- **1** Which of the following would best enable 2,2,4-trimethylpentane to be distinguished from octane?
 - (A) Mass spectrometry
 - (B) Determination of molar mass using gravimetric analysis
 - (C) Measuring volume of carbon dioxide produced when combusted
 - (D) Addition of bromine water
- 2 Separate 20.0 mL solutions of a weak monoprotic acid and a strong monoprotic acid of the same concentration are titrated with NaOH solution. Which of the following will be the same for these two titrations?
 - (A) Initial pH
 - (B) pH at the equivalence point
 - (C) Volume of NaOH required to reach the equivalence point
 - (D) The conductivity of the initial acid solutions
- **3** Which of the following reagents would liberate carbon dioxide when mixed with a concentrated aqueous solution of sodium carbonate?
 - (A) ethanoic acid
 - (B) ethanamine
 - (C) ethanamide
 - (D) ethyl ethanoate
- **4** Which of the following conditions will maximise the yield of dinitrogen tetraoxide?

$$2 \text{ NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g)$$

$$\Delta H = -57.2 \text{ kJ mol}^{-1}$$


- (A) Low temperature, low pressure
- (B) Low temperature, high pressure
- (C) High temperature, low pressure
- (D) High temperature, high pressure

- 5 10 mL of 0.01 mol L⁻¹ nitric acid (HNO₃) is diluted with 90 mL of water. What is the pH of the resulting solution?
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
- **6** Which of the following hydrocarbons contains an atom with trigonal planar geometry?
 - (A) propane
 - (B) propene
 - (C) propyne
 - (D) 2-methylpropane
- 7 Ethene reacts with hydrogen gas in the presence of a Pd-C catalyst. Which of the following statements about this reaction is correct?
 - (A) Ethanol is produced.
 - (B) The reaction also produces a byproduct.
 - (C) The Pd-C is consumed in the reaction.
 - (D) This is an addition reaction.
- 8 What is the concentration of OH⁻ ions (in mol L⁻¹) in an aqueous solution in which $[H^+] = 2.0 \times 10^{-3}$ mol L⁻¹ at 25°C?
 - (A) 2.0×10^{-3}
 - (B) 4.0×10^{-6}
 - (C) 5.0×10^{-12}
 - (D) 2.0×10⁻¹⁷

- **9** The name 2-propyl-2-chloro-4,5-dibromopentane does not follow IUPAC conventions. What is the systematic name of this compound?
 - (A) 4,5-dibromo-2-chloro-2-propylpentane
 - (B) 2-chloro-4,5-dibromo-2-propylpentane
 - (C) 4-chloro-6,7-dibromo-4-methylheptane
 - (D) 1,2-dibromo-4-chloro-4-methylheptane
- **10** Hydrogen and iodine react at 500°C according to the equation:

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

The apparatus shown below is set-up.

The tap between Vessels X and Y is opened and then the system is left at 500°C until no further change occurs. Which of the following statements is true?

- (A) X will contain more hydrogen than Y.
- (B) X and Y will contain the same amount of HI(g).
- (C) X will contain less iodine than Y.
- (D) Y will contain more HI(g) than X.
- **11** An organic compound reacted with concentrated HCl and ZnCl₂ to produce 2-chloro-2-methylpentane. What was the name of the original compound?
 - (A) 2-methylpentan-1-ol
 - (B) 2-chloropentanal
 - (C) 2-methylpentan-2-ol
 - (D) 2-methylpentanal

12 The following equilibrium exists in bromine water:

$$Br_2(aq) + H_2O(I) \rightleftharpoons Br(aq) + 2 H^+(aq) + OBr(aq)$$

(red-brown) (colourless) (colourless)

Which of the following solutions could be added to the reaction mixture to cause the red-brown colour of bromine water to fade?

- (A) HCI
- (B) KBr
- (C) AgNO₃
- (D) NaOBr
- 13 Which of the following salts has the highest molar solubility?
 - (A) calcium carbonate
 - (B) copper(II) carbonate
 - (C) lead(II) carbonate
 - (D) silver carbonate
- 14 A exists in equilibrium with B according to the equation below:

$$A(g) \rightleftharpoons B(g)$$

If 1.0 mole of A was allowed to reach equilibrium, how many moles of B would be formed if K_{eq} is equal to 0.40.

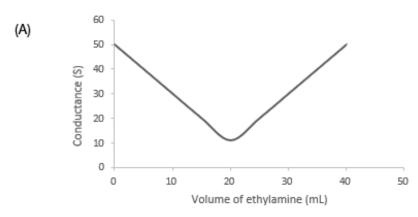
- (A) 0.29 mol
- (B) 0.40 mol
- (C) 0.60 mol
- (D) 0.71 mol

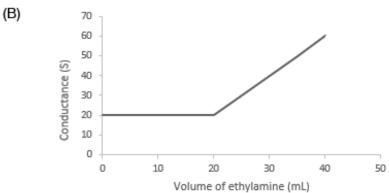
- **15** Propan-2-ol is heated with concentrated sulfuric acid. Compared to propan-2-ol, the product of this reaction:
 - (A) is more soluble in water.
 - (B) has a higher molar mass.
 - (C) has fewer signals in ¹³C NMR.
 - (D) has a lower boiling point.

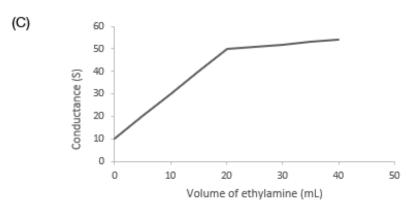
Question 16 and 17 refer to the following information.

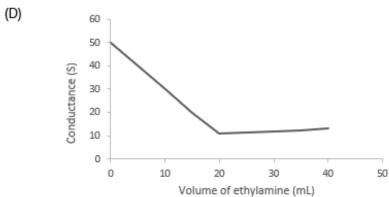
A section of a polymer is shown below.

16 Which of the following shows the monomer used to produce the polymer shown above?


$$\begin{array}{c}
H - C - H \\
O \\
C = C
\end{array}$$


- 17 If you are comparing this polymer to polyethylene, which of the following would be true?
 - (A) This polymer is an addition polymer while polyethylene is a condensation polymer.
 - (B) High-density polyethylene would have weaker intermolecular forces as the chains can pack into a more orderly solid.
 - (C) Being a polyester, this polymer is used to make clothing while polyethylene is used for car tyres.
 - (D) Both polymers could be made without the elimination of a small molecule.
- **18** Ammonia (NH₃) is a weak base in aqueous solution with an ionisation constant K_b . Which of the following represents the ionisation constant for the reaction:


$$NH_4^+(aq) + H_2O(1) \rightleftharpoons NH_3(aq) + H_3O^+(aq)$$


- (A) $\frac{K_{\rm w}}{K_{\rm a}}$
- (B) $\frac{K_{\rm a}}{K_{\rm w}}$
- (C) $\frac{K_{\rm w}}{K_{\rm h}}$
- (D) $\frac{K_{\rm b}}{K_{\rm w}}$

19 Which of the following plots correctly represents the conductometric titration of 0.05 mol L⁻¹ H₂SO₄ with 0.1 mol L⁻¹ of the weak organic base ethylamine?

20 Solid calcium chloride is added to 200.0 mL of 0.12 mol L⁻¹ potassium sulfate solution at 298 K.

What is the minimum mass of calcium chloride required to produce a precipitate?

- (A) 0.0033 g
- (B) 0.0091 g
- (C) 0.228 g
- (D) 6.21 mg

			IMRER
LAIN	і ІІІ ІА І	_ 1311	

Question 21 (3 marks)

The table provides thermodynamic data about two bromide salts.

	Δ _{sol} H (kJ mol ⁻¹)	Δ _{sol} S (J K ⁻¹ mol ⁻¹)
LiBr	-48.8	21.5
KBr	19.9	89.0

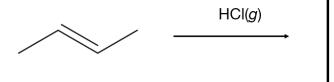
Compare and explain the solubilities of the two bromide salts at 300 K. You should include calculations in your answer.

Question 22 (7 marks)

Marks

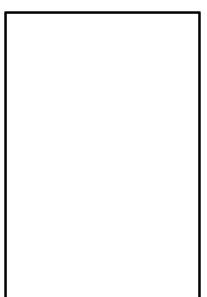
Sulfur trioxide decomposition reaches equilibrium at 200°C according to the equation:

$$2 \; SO_3(g) \rightleftharpoons 2 \; SO_2(g) + O_2(g)$$


(a) Use Collision Theory to state and explain the effect, if any, of an increase in the overall pressure.		
3	}	
(b) Identify the effect, if any, on the value of K_{eq} , if the overall pressure of the system is increased.		
(c) A 0.40 mol sample of $SO_3(g)$ is placed in a 2.0 L vessel and allowed to reach equilibrium. Given that $K_{eq} = 1.30 \times 10^{-9}$ at this temperature, calculate the equilibrium concentration of $SO_2(g)$.	3	

Question 23 (3 marks)

Marks


Complete the reactions below by drawing the structure of all organic reactant(s) and/or organic product(s).

(a)

1

(b)

+ H₂O

2

Question 24 (6 marks)	Marks
Lactic acid CH ₃ CH(OH)COOH is a weak monoprotic acid. (p K_a = 3.85)	
(a) Write an equation for the reaction of lactic acid with water.	1
(b) Identify a conjugate acid/base pair from this reaction.	1
Acid: Conjugate base:	
(c) State the equilibrium constant expression, K_a , for lactic acid.	1
(d) Calculate the pH of a 0.20 mol L ⁻¹ solution of lactic acid.	3
	•••••
	•••••

Question	25 ((3 marks)
----------	-------------	-----------

You have 0.1 mol L ⁻¹ solutions of each of NaNO ₃ and Na ₂ CO ₃ . Predict whether these two solutions are acidic, neutral or basic, explaining your reasoning with chemical equation(s where relevant.

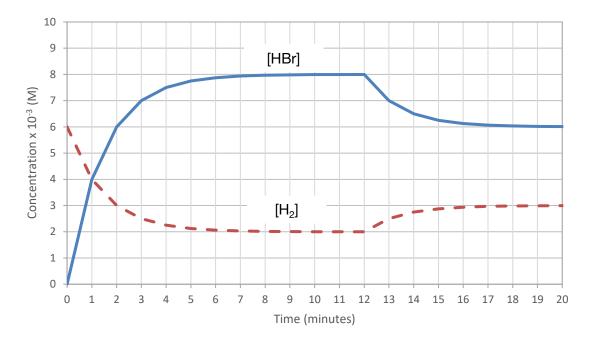
LEFT BLANK INTENTIONALLY

CANDIDATE NUMBER	_

Marks

Question 26	(5 marks)	
-------------	-----------	--

Compound X has the molecular formula $C_4H_{10}O$ and is highly soluble in water. It does not react when heated with acidified KMnO₄ nor acidified $K_2Cr_2O_7$.


(a)	Draw the structure and name compound <i>X</i> .	2
Na	ame:	
(b)	Predict the number of signals that compound X will show in ¹³ C NMR.	1
(c)	Draw two isomers of compound X that contain the same functional group as compound X .	2

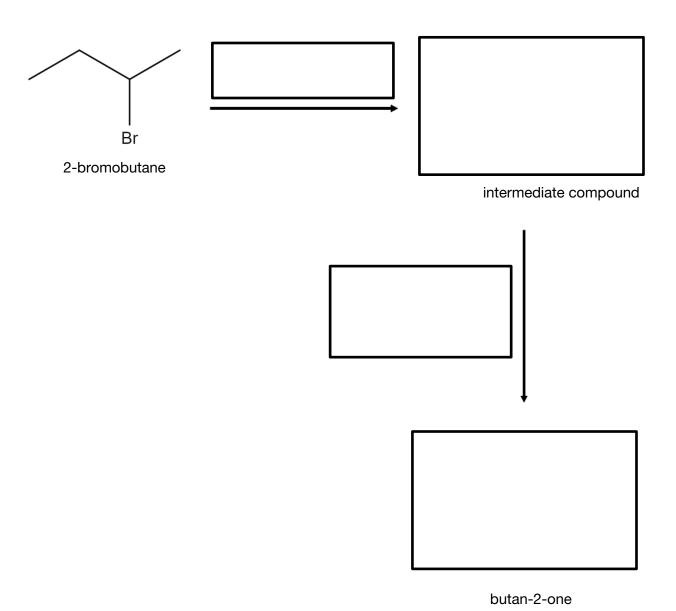
Question 27 (7 marks)

Marks

Equal volumes of hydrogen and bromine are introduced at T=0 minutes to a sealed vessel and allowed to reach equilibrium at 60° C.

$$H_2(g) + Br_2(g) \rightleftharpoons 2 HBr(g)$$
 $\Delta H = -103 \text{ kJ mol}^{-1}$

(a) Calculate K_{eq} for this reaction at 60°C.			
	••••••		

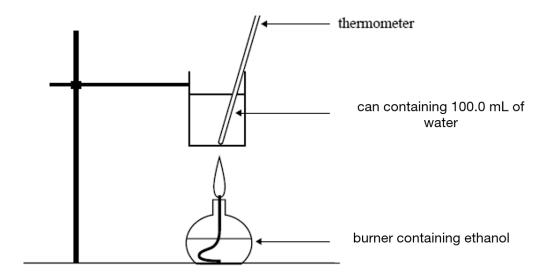

Question cont.	Marks

(b)	At 12 minutes, the temperature was changed. Deduce whether the temperature was increased or decreased and explain the change in concentration of $H_2(g)$ and $HBr(g)$ in terms of activation energy of the opposing reactions.	4

Question 28 (4 marks)

Butan-2-one can be produced from 2-bromobutane in two steps.

Complete the reaction scheme below to show how 2-bromobutane can be converted to butan-2-one. Include the reaction conditions for each step and diagrams for the intermediate compound and butan-2-one.



Question 29 (5 marks)

Marks

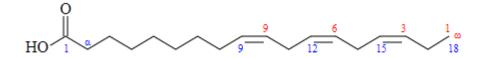
1

0.561~g of ethanol undergoes complete combustion using the equipment shown below. The initial temperature of the water was 20.0° C.

The enthalpy of combustion of ethanol is -1367 kJ mol ⁻¹ . Assuming half of the energy released from the burner is transferred into the water, calculate the final temperature of the water.	4
	••••
	energy released from the burner is transferred into the water, calculate the final

(a) Write a balanced chemical equation for the complete combustion of ethanol.

LEFT BLANK INTENTIONALLY


CANDIDATE NUMBER

Question 30 (7 marks)

Marks

Alpha-linolenic acid (ALA) is an omega-3, essential fatty acid. It is found in seeds and oil, and when extracted is a colourless liquid with a density of 0.91 g/mL. Its molar mass is 278.4 g mol⁻¹.

With a formula of $C_{18}H_{30}O_2$, ALA's structure is shown in the diagram below:

(a)	On the diagram	above.	circle the	functional	aroups	of this	molecule.
-----	----------------	--------	------------	------------	--------	---------	-----------

1

(b)	Predict whether this molecule would be water-soluble, explaining your reasoning.

2

 	 •

(c) 2 mL of ALA is mixed with 2 mL of bromine water, shaken and then left to stand for a few minutes. Identify and explain **two** observations you would make. You may find a diagram to be helpful.

2

• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 	 •
• • • • • • • • • • • •	• • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 	 •

Question cont.

(d)	When used, ALA is often partially hydrogenated, so it is an unhealthy trans-fat
	that has a single carbon-carbon double bond remaining. Calculate the volume of
	hydrogen gas at 100 kPa and 25°C required to convert 1.0 g of ALA to its
	equivalent trans-fat.

Marks

2

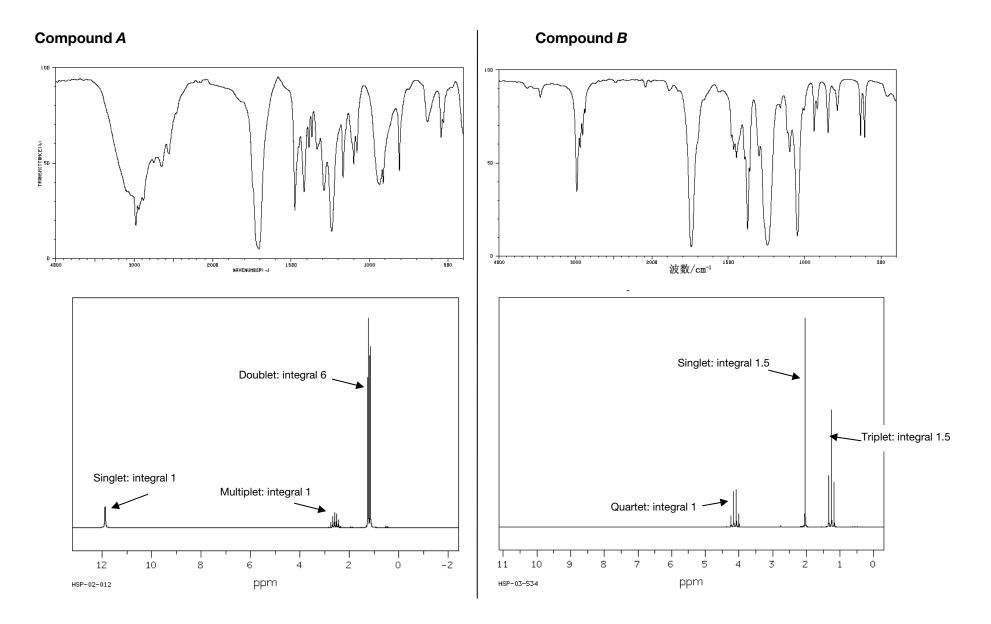
Question 31 (8 marks)	Marks
This question is about buffers.	
(a) State what is meant by the term <i>buffer</i> and describe the chemical an acid buffer solution in general terms.	composition of 2
50.0 mL of 0.10 mol L $^{-1}$ ammonia solution is mixed with 50.0 mL of 0.060 hydrochloric acid and the resulting mixture forms a buffer. The K_b of NH_3	
(b) Describe what would happen if an additional small amount of acid added to this buffer. Use an equation to support your explanation.	
(c) Calculate the pH of the buffer produced when the two solutions w	ere mixed.

Question	32	(3 marks)
----------	----	-----------

Determine the maximum mass of calcium hydroxide that will dissolve in 230 mL of 0.040 M barium hydroxide solution at 25°C.
Question 33 (3 marks)
(e maine)
Deduce whether a precipitate will form when 5.0 mL of 0.010 mol L ⁻¹ magnesium sulfate solution is added to 10.0 mL of 0.020 mol L ⁻¹ sodium carbonate solution at 25°C.
Deduce whether a precipitate will form when 5.0 mL of 0.010 mol L ⁻¹ magnesium sulfate
Deduce whether a precipitate will form when 5.0 mL of 0.010 mol L ⁻¹ magnesium sulfate
Deduce whether a precipitate will form when 5.0 mL of 0.010 mol L ⁻¹ magnesium sulfate
Deduce whether a precipitate will form when 5.0 mL of 0.010 mol L ⁻¹ magnesium sulfate
Deduce whether a precipitate will form when 5.0 mL of 0.010 mol L ⁻¹ magnesium sulfate
Deduce whether a precipitate will form when 5.0 mL of 0.010 mol L ⁻¹ magnesium sulfate
Deduce whether a precipitate will form when 5.0 mL of 0.010 mol L ⁻¹ magnesium sulfate

CANDIDATE NI IMBER	

Question 34 (9 marks)


Two organic compounds, *A* and *B*, are isomers with a chemical composition by mass of carbon 54.5%; hydrogen 9.2%; and oxygen 36.3%. *A* is soluble in water, while *B* is a pleasant-smelling liquid.

The mass spectrums of both A and B have the M^+ peak at 88 but are otherwise not helpful in distinguishing between the isomers as they both show peaks at an m/z ratio of 15, 29, 43 and 73.

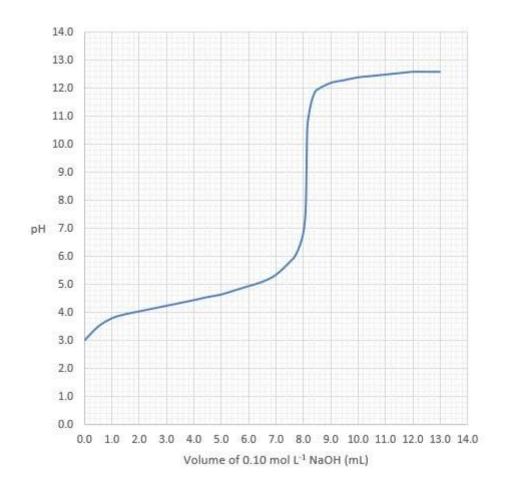
A's carbon-13 NMR has three peaks (one each at 184, 35 and 19 ppm), while B's equivalent has four peaks (171, 60, 21 and 17 ppm).

The IR and proton NMR spectra are shown on the following pages, along with proton NMR shift data.

Determine the structure of each of the isomers. Draw and name the isomers in the boxes provided on the following pages. **Justify your choices** based on the information provided, making sure to reference **ALL** spectral types.

¹H NMR chemical shift data

Type of proton	δ/ppm
Si(C H ₃) ₄ (TMS)	0
R–C H ₃	0.9–1.0
R–C H ₂–R	1.2–1.5
R-C H R ₂	1.5–2.0
R–C≡C– H (alkyne)	2.0-3.1
–CO–C H ₂– (aldehydes, ketones or esters)	2.1-2.7
R-C H ₂ -NH ₂	2.4-3.0
$R-C\mathbf{H}_2-X$ (X = F, Cl, Br, I)	3.0-4.5
-C H ₂ -O- (alcohols, ethers or esters)	3.3–4.8
R-O H	1–6
R-N H ₂	1–5
R₂C=C H R (alkene)	4.5–7.0
R-COON H -R (amide)	5–9
Ar- H (aromatic)	6.9–9.0
R-C H O (aldehyde)	9.4–10.0
R-COO H	9.0–13.0


Justification:

Compound A: Name
Structure of A
Compound B: Name
Structure of B

Question 35 (7 marks)

Marks

The following graph shows how the pH changes during the titration of 25.00 mL of a solution of a weak monoprotic acid (HA) with NaOH.

(a)	Using the graph, identify the pH at the equivalence point.	
		1

(b) Bromocresol purple is an indicator that changes from yellow to violet over the range 5.2 – 6.6. If bromocresol purple was used to detect the end point of this titration, what effect, if any, would this have on the calculated concentration of HA compared to its actual concentration?

Marks

Question cont.

(c)	Calculate the pK_a value of the HA acid. Give your answer to 2 decimal places.	5
• •		•
• •		•
• •		•
•		
•		•
•		•
•		•
• •		
• •		
• •		•
• •		•
• •		•
•		

END OF EXAMINATION

2019 HIGHER SCHOOL CERTIFICATE

Chemistry

FORMULAE SHEET

$n = \frac{m}{MM}$	$c = \frac{n}{v}$	PV = nRT
$q = mC\Delta T$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	$pH = -\log_{10}[H^+]$
$pK_a = -\log_{10}[K_a]$	$A = \varepsilon lc = \log_{10} \frac{I_o}{I}$	
Avogadro constant, N _A		$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at	100 kPa and	
	at 0°C (273.15 K)	22.71 L
	at 25°C (298.15 K)	24.79 L
Gas constant		$8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
Ionisation constant for water at	25°C (298.15 K), K _w	1.0×10^{-14}

DATA SHEET

Solubility constants at 25°C

Compound	K_{sp}	Compound	K_{sp}
Barium carbonate	2.58×10^{-9}	Lead(II) bromide	6.60×10^{-6}
Barium hydroxide	2.55×10^{-4}	Lead(II) chloride	1.70×10^{-5}
Barium phosphate	1.3×10^{-29}	Lead(II) iodide	9.8×10^{-9}
Barium sulfate	1.08×10^{-10}	Lead(II) carbonate	7.40×10^{-14}
Calcium carbonate	3.36 × 10 ⁻⁹	Lead(II) hydroxide	1.43×10^{-15}
Calcium hydroxide	5.02×10^{-6}	Lead(II) phosphate	8.0×10^{-43}
Calcium phosphate	2.07×10^{-29}	Lead(II) sulfate	2.53×10^{-8}
Calcium sulfate	4.93×10^{-5}	Magnesium carbonate	6.82×10^{-6}
Copper(II) carbonate	1.4×10^{-10}	Magnesium hydroxide	5.61×10^{-12}
Copper(II) hydroxide	2.2×10^{-20}	Magnesium phosphate	1.04×10^{-24}
Copper(II) phosphate	1.40×10^{-37}	Silver bromide	5.35×10^{-13}
Iron(II) carbonate	3.13×10^{-11}	Silver chloride	1.77×10^{-10}
Iron(II) hydroxide	4.87×10^{-17}	Silver carbonate	8.46×10^{-12}
Iron(III) hydroxide	2.79×10^{-39}	Silver hydroxide	2.0×10^{-8}
Iron(III) phosphate	9.91×10^{-16}	Silver iodide	8.52×10^{-17}
		Silver phosphate	8.89×10^{-17}
		Silver sulfate	1.20×10^{-5}

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

Infrared absorption data

Bond Wavenumber/c		
N—H (amines)	3300–3500	
O—H (alcohols)	3230-3550 (broad)	
с—н	2850–3300	
O—H (acids)	2500-3000 (very broad)	
C≡N	2220–2260	
c=o	1680–1750	
c=c	1620–1680	
с-о	1000–1300	
с-с	750–1100	

¹³C NMR chemical shift data

Type of carbon		δ/ppm
$-\stackrel{ }{c}-\stackrel{ }{c}-$		5–40
R - C - Cl or	r Br	10–70
R-C-C-C-C		20–50
$R - \stackrel{ }{C} - \stackrel{ }{N}$		25–60
-c-o-	alcohols, ethers or esters	50–90
c = c'		90–150
$R-C \equiv N$		110-125
		110–160
R — C — 0	esters or acids	160–185
R-C- 0	aldehydes or ketones	190–220

UV absorption (This is not a definitive list and is approximate.)

Chromophore	λ _{max} (nm)
с—н	122
с-с	135
c=c	162

Chromophore	λ_{max} (nm)	
C≡C	173 178	
c=c	196 222	
C—CI	173	
C—Br	208	

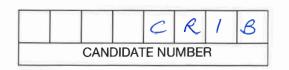
Some standard potentials

$K^+ + e^-$	\rightleftharpoons	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	\rightleftharpoons	Ca(s)	-2.87 V
$Na^+ + e^-$	\rightleftharpoons	Na(s)	–2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg(s)	-2.36 V
$A1^{3+} + 3e^{-}$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	\rightleftharpoons	Mn(s)	-1.18 V
$H_2O + e^-$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g) + OH	- 0.83 V
$Zn^{2+} + 2e^{-}$	\rightleftharpoons	Zn(s)	- 0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe(s)	- 0.44 V
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb(s)	- 0.13 V
H ⁺ + e ⁻	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g)	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 2e ⁻	\rightleftharpoons	2OH-	0.40 V
Cu ⁺ + e ⁻	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^{-}$	\rightleftharpoons	I ⁻	0.54 V
$\frac{1}{2}I_2(aq) + e^{-}$	\rightleftharpoons	I ⁻	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe^{2+}	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^{-}$	\rightleftharpoons	Br ⁻	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^{-}$	\rightleftharpoons	Br ⁻	1.10 V
$\frac{1}{2}$ O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2}\text{Cl}_2(g) + e^-$	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^{-}$	\rightleftharpoons	Cl	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}$ F ₂ (g) + e ⁻	\rightleftharpoons	F ⁻	2.89 V

2 He 4.003 Helium	10 Ne 20.18	18 Ar 39.95	36 Kr	83.80 Krypton	54 Xe	131.3 Xenon	86 Rn	Radon	118 Og	Oganesson
	9 F 19.00	CI CI 35.45 Chlorine	35 Br	79.90 Bromine	53 I	126.9 Iodine	85 At	Astatine	117 Ts	Tennessine
	8 O 16.00	16 S 32.07 Sulfur	34 Se	78.96 Selenium	52 Te	127.6 Tellurium	84 Po	Polonium	116 Lv	Moscovium Livermorium
	7 N 14.01	15 P 30.97 Phosphorus	33 As	74.92 Arsenic	51 Sb	121.8 Antimony	.E	209.0 Bismuth	115 Mc	Moscovium
	6 C 12.01	Si Si Silicon	32 Ge	72.64 Germanium	50 Sn	118.7 Tin	82	207.2 Lead	114 Fl	Flerovium
	5 B 10.81	13 A1 26.98 Aluminium	31 Ga	69.72 Gallium	49 In	114.8 Indium	81 TI	204.4 Thallium	113 Nh	Nihonium
MENTS			30 Zn	65.38 Zinc	Cd Cd	112.4 Cadmium	80 He	200.6 Mercury	112 Cn	Meitnerium Darmstadtium Roentgenium Copernicium
THE ELEMENTS			Cn Cn	63.55 Copper	47 Ag	$10\tilde{7.9}$	79 U.A	197.0 Gold	111 Rg	Roentgenium
		_	Z;8	58.69 Nickel	46 Pd	106.4 Palladium	% ±	195.1 Platinum	110 Ds	Darmstadtium
RIODIC TABLE OF KEY	79 Au 197.0	Prop	C ₀	58.93 Cobalt	45 Rh	102.9 Rhodium	77 1r	192.2 Iridium	109 Mt	Meitnerium
DIC T	Atomic Number Symbol lard Atomic Weight		26 Fe	55.85 Iron	44 Ru	101.1 Ruthenium				Hassium
PERIO	Ato:		25 Mn	54.94 Manganese	43 Tc	Technetium			107 Bh	Bohrium
			7. 7.	52.00 Chromium	42 Mo	95.96 Molybdenum	77 W	183.9 Tungsten	106 Sg	Seaborgium
			23	50.94 Vanadium	4 S	92.91 Niobium	73 Ta	180.9 Tantalum	105 Db	Dubnium
			7.52 T.	47.87 Titanium	40 Zr	91.22 Zirconium	72 Hf	178.5 Hafnium	104 Rf	Actinoids Rutherfordium Dubnium
			21 Sc	44.96 Scandium	39 Y	88.91 Yttrium	57–71	Lanthanoids	89–103	Actinoids
	Be 9.012	Mg 24.31 Magnesium	82	40.08 Calcium	38 Sr	87.61 Strontium	56 Ba	137.3 Barium	88 Ra	Radium
1 H 1.008 Hydrogen	3 Li 6.941	11 Na 22.99 Sodium	19 K	39.10 Potassium	37 Rb	85.47 Rubidium	જ્	132.9 Caesium	87 Fr	Francium

27	28	59	09	61	62	63	64	65	99	29	89	69	20	71
Гa	ಲಿ	Pr	PN	Pm	Sm	En	P5	Tp	Dy	Ho	д	Tm	λb	Γn
138.9	140.1	140.9	144.2		150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0
anthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holminm	Erbium	Thulium	Ytterbium	Lutetium

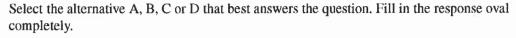
89 90 91 92 93 94 95 96 97 98 99 100 101 102 1 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No I Actinium Protectium Noptunium Phutonium Phutonium Americium Americium Berkelium Californium Fermium Mendelevium Nobelium Lawr	Actinon	ds													
Pa U Np Pu Americium Cm Bk Cf Es Fm Md No No Nobelium Putonium Putonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Law	68	90	91	92	93	94	95	96	26	86	66	100	101	102	103
231.0 238.0 Protactinium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium No	Ac	Th	Pa	n	ď	Pu	Am	Cm	Bk	Ç	Es	Fm	РW	N _o	L
Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium I		232.0	231.0	238.0	4										
	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium


Standard atomic weights are abridged to four significant figures.

Elements with no reported values in the table have no stable nuclides.

Information on elements with atomic numbers 113 and above is sourced from the International Union of Pure and Applied Chemistry Periodic Table of the Elements (February 2010 version) is the principal source of all other data. Some data may have been modified.

SYDNEY GRAMMAR SCHOOL



2023

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Chemistry

Section I - Multiple Choice

Sample:

2 + 4 =

(A) 2 $A \bigcirc$ (B) 6 В (C) 8 $C\bigcirc$ (D) 9 $D \bigcirc$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

 $C\bigcirc$

 $D \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

 $C \bigcirc$

11.

A O

A O

 $D \bigcirc$

ВО

DO

DO

Start _ Here

2. A O BO C 🍩 DO

3. A 🚳 BO CO DO A O В CO DO

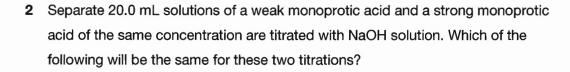
5. A O ВО C DO 6. A O В 🔵 CO DO

7. A O ВО CO D 🌑 8. A O ВО C 💿 DO

9. A O BO CO D 🍘 **10.** A O CO DO В 🍩

12. A O ВО C DO **13**. A O CO BO D 📵 14. CO A 🔵 BO DO **15**. A O BO CO D 🌑 **16.** DO A 🔵 ВО CO **17**. A O ВО CO D 🔵 **18**. A O ВO C DO 19. A O ВО CO D 🝘 **20**.

В


CO

SECTION I: MULTIPLE CHOICE (20 marks)

Attempt ALL Questions
Use the Multiple-Choice Answer Sheet.

1	Which of the following would	best enable 2,2,4-trimethylpentane to be distinguished
	from octane?	Tisomers

- (A) Mass spectrometry
- (B) Determination of molar mass using gravimetric analysis
- (C) Measuring volume of carbon dioxide produced when combusted
- (D) Addition of bromine water no c= C

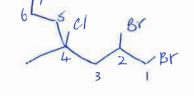
- (A) Initial pH
- (B) pH at the equivalence point
- (C) Volume of NaOH required to reach the equivalence point
- (D) The conductivity of the initial acid solutions
- 3 Which of the following reagents would liberate carbon dioxide when mixed with a concentrated aqueous solution of sodium carbonate? need an acid
 - (A) ethanoic acid
 - (B) ethanamine
 - (C) ethanamide
 - (D) ethyl ethanoate
- 4 Which of the following conditions will maximise the yield of dinitrogen tetraoxide?

$$2 \text{ NO}_2(g) \rightleftharpoons N_2O_4(g)$$
 $\Delta H = -57.2 \text{ kJ mol}^{-1}$

- (A) Low temperature, low pressure
- (B) Low temperature, high pressure
- (C) High temperature, low pressure
- (D) High temperature, high pressure

- 5 10 mL of 0.01 mol L-1 nitric acid (HNO₃) is diluted with 90 mL of water. What is the 10 -> 100 p#+1. pH of the resulting solution?
 - (A) 1
 - (B)
- Which of the following hydrocarbons contains an atom with trigonal planar geometry?

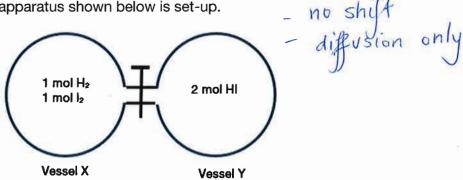
H, C = C H2


- (A) propane
- (B) propene
- (C) propyne
- 2-methylpropane (D)
- 7 Ethene reacts with hydrogen gas in the presence of a Pd-C catalyst. Which of the following statements about this reaction is correct?
 - Ethanol is produced. X ethane produced

 The reaction also produces a byproduct.

 The Pd-C is consumed in the reaction. X catalyst (A)
 - (B)
 - (C)
 - ((D)) This is an addition reaction.
- 8 What is the concentration of OH ions (in mol L-1) in an aqueous solution in which $[H^{+}] = 2.0 \times 10^{-3} \text{ mol L}^{-1} \text{ at } 25^{\circ}\text{C}$?
 - 2.0×10^{-3}
 - (B) 4.0×10⁻⁶
 - (C) 5.0×10⁻¹²
 - (D) 2.0×10⁻¹⁷

$$\begin{bmatrix} 0H^- \end{bmatrix} = \frac{1 \times 10}{2 \times 10^{-3}}$$


- The name 2-propyl-2-chloro-4,5-dibromopentane does not follow IUPAC conventions. What is the systematic name of this compound?
 - (A) 4,5-dibromo-2-chloro-2-propylpentane
 - (B) 2-chloro-4,5-dibromo-2-propylpentane
 - (C) 4-chloro-6,7-dibromo-4-methylheptane
 - 1,2-dibromo-4-chloro-4-methylheptane

10 Hydrogen and iodine react at 500°C according to the equation:

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

The apparatus shown below is set-up.

The tap between Vessels X and Y is opened and then the system is left at 500°C until no further change occurs. Which of the following statements is true?

- (A)X will contain more hydrogen than Y.
- (B) X and Y will contain the same amount of HI(g).
- (C) X will contain less iodine than Y.
- (D) Y will contain more HI(g) than X.
- 11 An organic compound reacted with concentrated HCl and ZnCl₂ to produce 2-chloro-2-methylpentane. What was the name of the original compound?
 - (A) 2-methylpentan-1-ol
 - 2-chloropentanal (B)
 - (C) 2-methylpentan-2-oi
 - (D) 2-methylpentanal

- OH substituted with C1.

12 The following equilibrium exists in bromine water:

$$Br_2(aq) + H_2O(l) \rightleftharpoons Br(aq) + 2 H^+(aq) + OBr(aq)$$

(red-brown) (colourless) (colourless)

Which of the following solutions could be added to the reaction mixture to cause the red-brown colour of bromine water to fade?

- (A) **HCI**
- (B) **KBr**
- AgNO₃
- (D) NaOBr

Ag Br (s) ppt causing Br V, so reaction

13 Which of the following salts has the highest molar solubility?

(A) calcium carbonate

V3 36× 10-9 = 5.8×10-5 M.

(B) (C)

copper(II) carbonate V1.4 x 10-10 | Smaller | Smaller

silver carbonate

3 -8.46×10-12 = 1.3×10-4. M

14 A exists in equilibrium with B according to the equation below:

$$A(g) \rightleftharpoons B(g)$$

If 1.0 mole of A was allowed to reach equilibrium, how many moles of B would be formed if K_{eq} is equal to 0.40.

- 0.29 mol
- (B) 0.40 mol
- (C) 0.60 mol
- 0.71 mol (D)

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} B \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ c & -\infty & +\infty \\ E & 1-\infty & \infty \end{bmatrix}$$

$$k_{eq} = \frac{[8]}{[4]} = \frac{x}{1-x} = 0.4$$

$$x = 0.4 - 0.4x$$

$$x = \frac{0.4}{0.4} = 0.29$$

Propan-2-ol is heated with concentrated sulfuric acid. Compared to propan-2-ol, the product of this reaction:

- (A) is more soluble in water.
- (B) has a higher molar mass.
- (C) has fewer signals in ¹³C NMR.
- (D) has a lower boiling point.

Question 16 and 17 refer to the following information.

A section of a polymer is shown below.

16 Which of the following shows the monomer used to produce the polymer shown above?

(B)
$$H = C = C$$
 $H = C = C$

(D)
$$H = C - H$$
 $O = H - C - H$ $H = C - H$ $H = C - H$ $H = C - H$

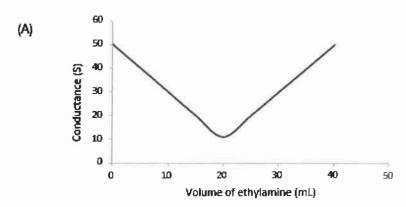
- 17 If you are comparing this polymer to polyethylene, which of the following would be true?
 - This polymer is an addition polymer while polyethylene is a condensation (A) polymer.
 - High-density polyethylene would have weaker intermolecular forces as the (B) chains can pack into a more orderly solid.
 - (C) Being a polyester, this polymer is used to make clothing while polyethylene is used for car tyres.
 - (D) Both polymers could be made without the elimination of a small molecule.
- 18 Ammonia (NH3) is a weak base in aqueous solution with an ionisation constant Kb. Which of the following represents the ionisation constant for the reaction:

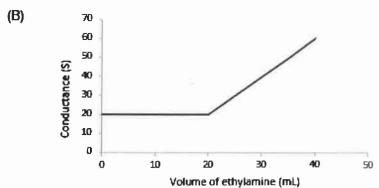
$$NH4^{+}(aq) + H2O(I) \rightleftharpoons NH3(aq) + H3O^{+}(aq)$$

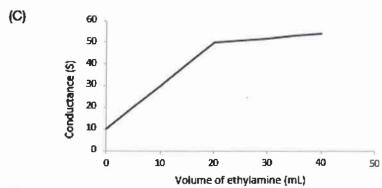
(A)
$$\frac{K_{\rm w}}{K_{\rm a}}$$

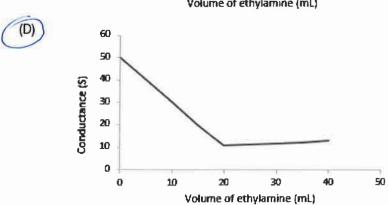
(B)
$$\frac{K_{\rm a}}{K_{\rm w}}$$

$$(C) \frac{K_{\rm w}}{K_{\rm b}}$$


(D)
$$\frac{K_b}{K_w}$$


$$K_{W} = \begin{bmatrix} H_{3}O^{\dagger} \end{bmatrix} \begin{bmatrix} OH^{-} \end{bmatrix}$$


$$K = \frac{\begin{bmatrix} H_{3}O^{\dagger} \end{bmatrix} \begin{bmatrix} NH_{3} \end{bmatrix}}{\begin{bmatrix} NH_{4}^{\dagger} \end{bmatrix}}$$


Sydney Grammar School

19 Which of the following plots correctly represents the conductometric titration of 0.05 mol L⁻¹ H₂SO₄ with 0.1 mol L⁻¹ of the weak organic base ethylamine?

20 Solid calcium chloride is added to 200.0 mL of 0.12 mol L⁻¹ potassium sulfate solution at 298 K.

What is the minimum mass of calcium chloride required to produce a precipitate?

- (A) 0.0033 g
- (B) 0.0091 g
- (C) 0.228 g
- (D) 6.21 mg

$$K_{Sp} = \left[Ca^{24} \right] \left[So_{y}^{2} \right] = 4.93 \times 10^{-5}$$

$$\left[Ca^{24} \right] = \frac{4.93 \times 10^{-5}}{0.12} = 4.11 \times 10^{-4} \text{ M}$$

$$h\left(Ca^{24} \right) = 4.11 \times 10^{-4} \times 0.2$$

$$= 8.24 \times 10^{-4} \text{ mod}$$

$$m\left(Cacl_{2} \right) = 8.21 \times 10^{-4} \times \left(40.01 + 2 \times 35.45 \right)$$

$$= 9.11 \times 10^{-2} g$$

Question 21 (3 marks)

The table provides thermodynamic data about two bromide salts.

	Δ _{sol} H (kJ. mol ⁻¹)	Δ _{sol} S (J K ⁻¹ mol ⁻¹)
LiBr	-48.8	21.5
KBr	19.9	89.0

Compare and explain the solubilities of the two bromide salts at 300 K. You should include calculations in your answer.

Question 22 (7 marks)

Marks

Sulfur trioxide decomposition reaches equilibrium at 200°C according to the equation:

$$2 SO_3(g) \rightleftharpoons 2 SO_2(g) + O_2(g)$$

(a) Use Collision Theory to state and explain the effect, if any, of an increase in the overall pressure.

3

I hereasing pressure, increases the number of successful collisions between both readout () and product molecules

2. However, as there are more moles of product of relative to reactant (3:2 mole ratio) of the reverse reaction is favoured — ()

(b) Identify the effect, if any, on the value of K_{eq} , if the overall pressure of the system is increased.

Value of Kag 15 unaffected

(c) A 0.40 mol sample of SO₃(g) is placed in a 2.0 L vessel and allowed to reach equilibrium. Given that $K_{eq} = 1.30 \times 10^{-9}$ at this temperature, calculate the equilibrium concentration of SO₂(g).

3

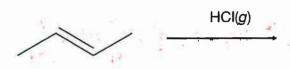
 $250_3 \rightleftharpoons 250_2 + 0_2$ $[1] 0.4 = 0.2 \qquad 0$ $[c] -2x \qquad +2x \qquad +x$ $[E] 0.2 - 2x \qquad 2x \qquad x$ $K_{eq} = 1.30 \times 10^{-9} = x(2x)^2$ $(0.2 - 2x)^2$ $= 4x^3$

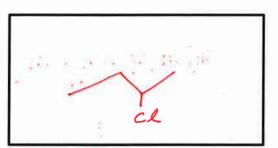
0.04-8x+4x2

3 marks for correct answer with warking

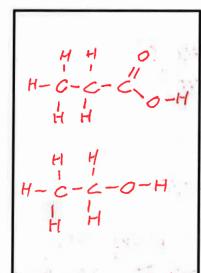
 $x^{3} = 0.04 \times 1.30 \times 10^{-9}$

Mark for one significant step in [303] = 20 =


=2x= 4.7 × 10-4 M


Question 23 (3 marks)

Marks


Complete the reactions below by drawing the structure of all organic reactant(s) and/or organic product(s).

(a)

(b)

conc H₂SO₄ heat

+ H₂O

2

Question 24 (6 marks)

Marks

1

Lactic acid CH₃CH(OH)COOH is a weak monoprotic acid. (p $K_a = 3.85$)

(a)	write an equation for the re	eaction of lactic acid	a with water.	
	CH,CH(OH)(COOH +	HO = CH	CH (OH) COS +	H3O+
3.5.5	(00)		1991	109)

(b) Identify a conjugate acid/base pair from this reaction.

Acid: CH_CM(OH)COOH or H:0" Conjugate base: CH3CH(OH) COT HO

- (c) State the equilibrium constant expression, Ka, for lactic acid.
- (d) Calculate the pH of a 0.20 mol L⁻¹ solution of lactic acid.

3 marks for correct answer with sufficient working
2 marks for correct working with one error
1 mark for one significant piece of working

Question 25 (3 marks)

You have 0.1 mol L⁻¹ solutions of each of NaNO₃ and Na₂CO₃. Predict whether these two solutions are acidic, neutral or basic, explaining your reasoning with chemical equation(s), where relevant.

1. NaNOz is newtral as both Nat and ...
NOz are week conjugates from strong bases and ancids and are therefore ment.
I mark for correct identification as ...
Theotral salt with explanation.

2. Nay CO3 is basic as Nat ions are nort but CO32 ions are strong conjugates from a weak acid and will there fore hydrolyse I mark for correctly identifying salt as basic with explanation.

3. I mark for giving the equation to show why CO_3^{2-} 15 basic. CO_3^{2-} + $HO \rightleftharpoons HCO_3$ + OH ag

Compound X has the molecular formula $C_4H_{10}O$ and is highly soluble in water. It does not react when heated with acidified KMnO₄ nor acidified $K_2Cr_2O_7$.

(a) Draw the structure and name compound X.

2

Name: 2-nethylpropan-2-01 for structure)

(b) Predict the number of signals that compound X will show in 13 C NMR.

2 (if structure using, had be match (a))

(c) Draw two isomers of compound *X* that contain the same functional group as compound *X*.

2

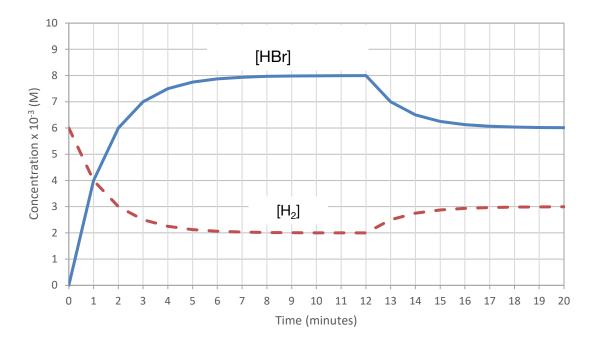
any 2 of

OH

OH

(had to match

functional


group in (9))

Note: bond had to deally go to oxygen atom of hydroxyl. Max I mark lost in two section, QZ8 included.

3

Equal volumes of hydrogen and bromine are introduced at T=0 minutes to a sealed vessel and allowed to reach equilibrium at 60° C.

$$H_2(g) + Br_2(g) \rightleftharpoons 2 HBr(g)$$
 $\Delta H = -103 \text{ kJ mol}^{-1}$

(a) Calculate K_{eq} for this reaction at 60°C.

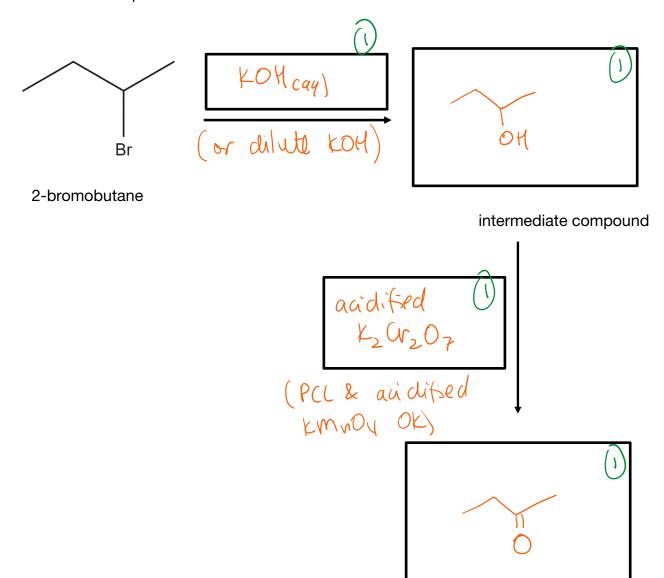
Ley =	CHB1]2	
0	[HZ][B/2]	(i) equil expression
=	$(8 \times 10^{-3})^2$,
	$(2\times10^{-3})(2\times10^{-3})$	() comect substitution
=	16	includity x10-3
		3
		1) what answer

(b) At 12 minutes, the temperature was changed. Deduce whether the temperature was increased or decreased and explain the change in concentration of $H_2(g)$ and HBr(g) in terms of activation energy of the opposing reactions.

collision requires KE>EA U MBr) note: x you shouldn't refer to "the reaction". There is a forward a a reverse reaction, please be specific * There is no "enclothemic side", there is an evelothemic direction * reactants/products do not have Ltt, a reaction has a DH value * you can refer to LCP, but it is not an explanation

Sample answer Q27(b)

As $[H_2]$ increases and [HBr] decreases, the equilibrium has shifted to the reactants side. The forward reaction is exothermic ($\Delta H < 0$) so the reverse reaction is endothermic. As the endothermic reaction has been favoured, the temperature must have been increased.

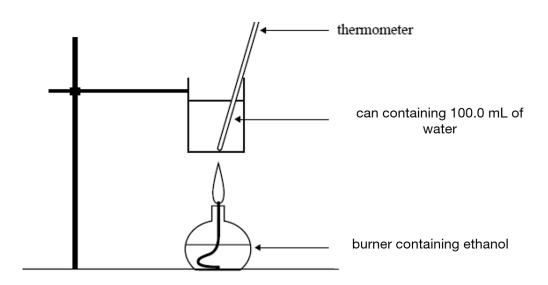

The endothermic direction has a higher activation energy than the exothermic direction, so a T increase means that the proportion of particles with kinetic energy > activation energy increases more for the endothermic reaction than the exothermic. Both reactions have an increase in successful collisions, but the increase is more significant for the reverse reaction than for the forward reaction, so the rate of the reverse reaction increases more.

This ultimately results in a new equilibrium position with higher [H₂] and lower [HBr].

Question 28 (4 marks)

Butan-2-one can be produced from 2-bromobutane in two steps.

Complete the reaction scheme below to show how 2-bromobutane can be converted to butan-2-one. Include the reaction conditions for each step and diagrams for the intermediate compound and butan-2-one.


butan-2-one

Note: bond had to deally go to oxygen atom of hydroxyl Max I mark lost in this section, Q26 included

Question 29 (5 marks)

Marks

0.561 g of ethanol undergoes complete combustion using the equipment shown below. The initial temperature of the water was 20.0°C.

(a) Write a balanced chemical equation for the complete combustion of ethanol.

1

(states were not wanted, so many boys got lucky!)

(b) The enthalpy of combustion of ethanol is -1367 kJ mol⁻¹. Assuming half of the energy released from the burner is transferred into the water, calculate the final temperature of the water.

 $\Delta H = -\frac{9}{7}$ $h(ethonol) = \frac{0.561}{46.068} = 0.01218 \text{ mol}$

 $-q = 1367 \times 0.01218 \times 2 = 8.323 \text{ kg} = 8323 \text{ J}$

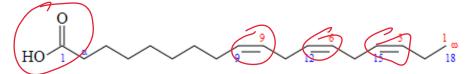
 $\Delta T = \frac{9}{100} = \frac{9}{100}$

 $f_{ival} = 20.0 + 19.9$ $f_{ival} = 39.90$ (3 s.f.) -1 per mutake

common mistakes included

- forgetting only & everyon went into water

- using notes y water instant of ethans


- forgetting J/KJ conversion

Question 30 (7 marks)

Marks

Alpha-linolenic acid (ALA) is an omega-3, essential fatty acid. It is found in seeds and oil, and when extracted is a colourless liquid with a density of 0.91 g/mL. Its molar mass is 278.4 g mol⁻¹.

With a formula of C₁₈H₃₀O₂, ALA's structure is shown in the diagram below:

(a) On the diagram above, circle the functional groups of this molecule.

Marking criteria	Marks
Circles alkanoic acid/carboxyl group (-COOH) AND alkene groups (C=C)	1
only	

Markers Note:

- Students should circle **all** the alkene groups. (Circling just one example of this functional group was accepted)
- The carbonyl and hydroxy groups should not have been circled separately.
- C-C single bonds are not a functional group.

(b) Predict whether this molecule would be water-soluble, explaining your reasoning.

Marking criteria

Correct prediction of solubility with a **thorough** explanation of insolubility with reference to:
- dispersion forces and hydrogen bonding
- polarity of water
- non-polar fatty acid (dominance of non-polar tail in fatty acid)
OR
Correct prediction of solubility with a **thorough** explanation of insolubility with reference to:
- enthalpic considerations
- entropic considerations

Correct prediction of solubility and a sound explanation that lacks depth and detail.

Sample answer:

This molecule will not be soluble in water since this large molecule is dominated by a long non-polar hydrocarbon tail. This hydrophobic (non-polar) tail exhibits dispersion forces that are not strong enough to overcome the strong hydrogen bonds that exist between the polar water molecules and hence will not dissolve. Even though the fatty acid has a polar acid functional group that could form some hydrogen bonding with the water molecules, this interaction will be outweighed by the dispersion forces that exist between the long non-polar tails of the fatty acid, that form the majority of the molecule.

1

2

(c) 2 mL of ALA is mixed with 2 mL of bromine water, shaken and then left to stand for a few minutes. Identify and explain two observations you would make. You may find a diagram to be helpful.

Marking criteria	Marks
Identifies and explains TWO observations	2
Identifies and explains ONE observation.	1
OR	
Identifies TWO observations	

Sample answer:

- The orange-brown bromine water is decolourised due to the addition reaction of bromine water across the C=C double bonds in the ALA forming a colourless product.
- The non-polar ALA will separate and float on top of the aqueous layer since ALA is less dense than water and insoluble in water.

Markers note:

It was not enough for an explanation to simply say the bromine water would decolourise due to **presence** of C=C. Students needed to explain how the reaction occurs. Note: Clear is not a colour (i.e., bromine water goes clear did not score marks for observation as the bromine water was clear to start with (i.e., clear brown/orange at star)t, also it is not the ALA that goes colourless as this was colourless at the start.

(d) When used, ALA is often partially hydrogenated, so it is an unhealthy trans-fat that has a single carbon-carbon double bond remaining.

Calculate the volume of hydrogen gas at 100 kPa and 25°C required to convert 1.0 g of ALA to its equivalent trans-fat.

2

Marking criteria	Marks
Correct answer	2
One step correct	1

Sample answer:

 $2H_2$ needed to convert 2 C = C in ALA $n_{ALA} = m/MM = 1/278.4 = 3.59 \times 10^{-3}$ mol $n_{H2} = 2 \times n_{ALA} = 7.18 \times 10^{-3}$ mol H_2 needed. At 25 °C and 100KPa, $v_{H2} = n \times 24.79 = 0.178L = 0.18 L$ (2 sf)

Markers note:

Responses need to show working clearly and use some words to show what they are calculating.

Many responses failed to recognise that 2 moles of H_2 were needed in the reaction.

2

Question 31 (8 marks)

Marks

This question is about buffers.

(a) State what is meant by the term *buffer* and describe the chemical composition of an acid buffer solution in general terms.

Marking criteria	Marks
 Describes a buffer system as helping to maintain pH/resist changes to pH 	2
Correctly describes the chemical composition and equimolar concentrations of an acid buffer	
One of the above	1

Sample answer:

A buffer resists changes in pH when acid or base is added to a system. An acid buffer is composed of a **50:50 ratio** (or equimolar or approx. equal amounts) of a **WEAK** acid with its conjugate base e.g., CH₃COOH/CH₃COONa

Markers note:

Responses for the composition of the buffer often lacked detail such as:

- the equivalent amounts of weak acid : conjugate base
- recognising that the acid used needed to be weak.

Some responses did not address the question re the composition of an acid buffer and students generically wrote the components of all buffers . eg weak acid/base with conjugate base/acid.

50.0 mL of 0.10 mol L⁻¹ ammonia solution is mixed with 50.0 mL of 0.060 mol L⁻¹ hydrochloric acid and the resulting mixture forms a buffer. The K_b of NH₃ is 1.78 x 10⁻⁵.

(b) Describe what would happen if an additional small amount of acid solution was added to this buffer. Use an equation to support your explanation.

Marking criteria	Marks
Thorough description involving shift of equilibrium to counteract change	2
with a correct equation showing equilibrium arrows	
Sound description relating to a suitable equation OR a correct equilibrium	1
equation.	

Sample answer:

The buffer system formed is $NH_{3 (aq)} + H_2O_{(l)} \rightleftharpoons NH_{4 (aq)}^+ + OH_{(aq)}^-$

If H_3O^+ added to this buffer system, it would remove OH^- from the equilibrium system due to the reaction of $H_3O^+ + OH^- \rightarrow 2H_2O$.

The equilibrium shifts to the RHS (LCP), therefore resisting change to pH, since H_3O^+ has been removed and pH = - log [H_3O^+]. The buffer reestablishes equilibrium, and pH is minimally affected.

OR

The buffer system formed is NH_3 (aq) + H_3O^+ (aq) $\Rightarrow NH_4^+$ (aq) + $H_2O(l)$

If H_3O^+ added to this buffer system, the equilibrium shifts to the RHS (LCP), therefore resisting change to pH, since H_3O^+ has been removed and pH = - log [H_3O^+]. The buffer reestablishes equilibrium, and pH is minimally affected.

Markers note:

Many responses did not demonstrate a thorough understanding of buffers. Responses for the buffer needed an equilibrium arrow and a description of the shift in equilibrium when an acid added to the system.

(c) Calculate the pH of the buffer produced when the two solutions were mixed.

4

Marking criteria	Marks
Correct answer with all working	4
One error in calculation but all correct steps.	3
Two correct steps	2
Any correct step eg calculating moles ammonia and HCl, identifying	1
limiting reagent, calculating [NH ₃], [NH ₄ +], expression for K _b , pOH or pH calculation	

Sample answer:

 $n(NH_3) = 0.10 \times 0.05 = 0.005 \text{ mol}$

 $n(HCI) = 0.060 \times 0.05 = 0.003 \text{ mol}$

HCl is limiting.

Therefore, in buffer $n(NH_3) = 0.002 (0.005 - 0.003)$ and $n(NH_4^+) = n(HCl) = 0.003$ This is in 100 mL, therefore: $[NH_3] = 0.002/.1 = 0.02M$, $[NH_4^+] = 0.003/.1 = 0.03M$

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

	NH₃	H ₂ O	NH ₄ ⁺	OH-
1	0.020		0.030	0
С	- X		+ X	+ X
E	0.020 - x		0.030 + x	X

 $K_b NH_3 = 1.78 \times 10^{-5}$ (x is negligible compared to concentrations of 0.02 M and 0.03 M) $1.78 \times 10^{-5} = [NH_4^+] [OH^-]/[NH_3] = 0.030 \times 0.020$ $x = [OH^-] = (1.78 \times 10^{-5} \times 0.020)/0.030 = 1.186666 \times 10^{-5} M$ $pOH = -log [OH^-] = 4.926$ pH = 14 - pOH = 9.07

Markers note:

```
If solve with H-H:

pH = pK_a + log [A^-] [HA]

pK_a = 14 - pK_b = 14 - (-log 1.78 \times 10^{-5}) = 9.25

(Or find via K_a = K_w/K_b = 1 \times 10^{-14}/1.78 \times 10^{-5} = 5.61798 \times 10^{-10}, pKa = -log 5.61798 \times 10^{-10})

In buffer n(NH_3) = 0.002 (0.005 - 0.003) and n(NH_4^+) = 0.003

[NH_3] = 0.002/.1 = 0.02M, [NH_4^+] = 0.003/.1 = 0.03M

pH = pK_a + log [A^-] [HA]

pH = 9.25 + log (0.02/0.03) = 9.07

OR

pOH = pK_b + log [NH_4^+] / [NH_3]

= -log 1.78 \times 10^{-5} + log (0.03/0.02) = 4.9256...

pH = 14 - 4.9256... = 9.07
```

Question 32 (3 marks)

Determine the maximum mass of calcium hydroxide that will dissolve in 230 mL of 0.040 M barium hydroxide solution at 25°C.

Marking criteria	Marks
Correct answer with calculations	3
One error in calculation	2
One correct step. eg correct [OH-], correct molar mass of Ca(OH) ₂	1

```
Sample answer:

K_{sp} of Ca(OH)_2 = 5.02 \times 10^{-6}

K_{sp} = [Ca^{2+}][OH^-]^2
```

 $[Ba(OH)_2] = 0.04$ M, therefore $[OH^2] = 0.08$ M (hydroxide ion will have negligible change in concentration with dissolution of calcium hydroxide)

```
\begin{split} \textit{K}_{sp} &= [\text{Ca}^{2+}][\text{OH}^{\text{-}}]^2 \\ &= 5.02 \times 10^{\text{-}6} = \text{x} \cdot 0.08^2 \\ &= 7.843 \times 10^{\text{-}4} \text{ mol L}^{\text{-}1} \\ &n_{\text{Ca}2+} = c \times v = 7.843 \times 10^{\text{-}4} \times 0.230 = 1.804 \times 10^{\text{-}4} \text{ mol L}^{\text{-}1} \\ &n_{\text{Ca}2+} = n_{\text{Ca}(\text{OH})2} \\ &\text{mass calcium hydroxide} = n \times \text{MM} = 1.804 \times 10^{\text{-}4} \times 74.096 = 0.0134 \text{ g} \end{split}
```

Markers note:

• Students are advised to show their working and logic clearly. Using some words to show what is being calculated is strongly advised! (A bunch of numbers on a page is not very helpful.)

Question 33 (3 marks)

Deduce whether a precipitate will form when 5.0 mL of 0.010 mol L⁻¹ magnesium sulfate solution is added to 10.0 mL of 0.020 mol L⁻¹ sodium carbonate solution at 25°C.

Marking criteria	Marks
Correct	3
 calculations for [Mg²⁺] and [CO₃²⁻], calculation for Q_{SD} 	
 relationship between Q_{sp} and K_{sp} and deduction of ppt forming 	
One minor error in above but must show calculation of Qsp	2
One correct step.	1

Sample answer:

$$\begin{split} [Mg^{2+}] &= (0.01 \times 0.005)/0.015 = 3.33 \times 10^{-3} \text{ mol L}^{-1} \\ [CO_3^{2-}] &= Vc = (0.020 \times 0.01)/0.015 = 1.33 \times 10^{-2} \text{ mol L}^{-1} \\ Q_{sp} &= [Mg^{2+}] \times [CO_3^{2-}] = 4.44 \times 10^{-5} \\ K_{sp} \, (MgCO_3) &= 6.82 \times 10^{-6} \\ Q_{sp} &> K_{sp}, \text{ therefore a precipitate will form.} \end{split}$$

Markers note:

- Students are advised to show their working clearly.
- Some responses showed calculations for a limiting reagent. i.e., Students identified that number of moles of Mg²⁺ was limiting reagent and tried calculating Qsp using $[Mg^{2+}] = [CO_3^{2-}] = 3.33 \times 10^{-3}$ mol L⁻¹. If correct steps, Qsp = 1.11 x 10⁻⁵ and Qsp > 6.82 x 10⁻⁶, therefore a ppt forms, followed this answer, students could score a maximum of 2 marks.

Question 34 (9 marks)

Two organic compounds, *A* and *B*, are isomers with a chemical composition by mass of carbon 54.5%; hydrogen 9.2%; and oxygen 36.3%. *A* is soluble in water, while *B* is a pleasant-smelling liquid.

The mass spectrums of both *A* and *B* have the M⁺ peak at 88 but are otherwise not helpful in distinguishing between the isomers as they both show peaks at an m/z ratio of 15, 29, 43 and 73.

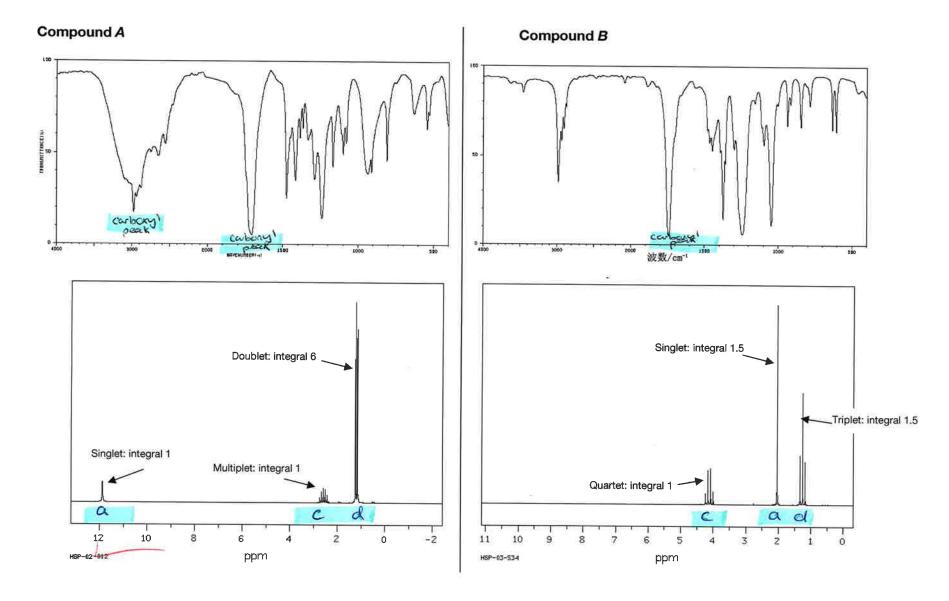
A's carbon-13 NMR has three peaks (one each at 184, 35 and 19 ppm), while B's equivalent has four peaks (171, 60, 21 and 17 ppm).

The IR and proton NMR spectra are shown on the following pages, along with proton NMR shift data.

Determine the structure of each of the isomers. Draw and name the isomers in the boxes provided on the following pages. **Justify your choices** based on the information provided, making sure to reference **ALL** spectral types.

Marked holistically

Marks	Criteria
9	 Draws and names Compound A as 2-methylpropanic acid Draws and names Compound B as ethyl ethanoate Clear, logical justification with detailed reference to all four spectra and other supplied information Eliminates all possible alternatives
8	Missing one item from 9 – often incorrect name OR alternative elimination
7	Missing two items from 9
5-6	Correctly identified compounds but gives limited justification
3-4	Gives a list of features with limited justification AND correctly identifies at least one of the compounds
1-2	Any new information of relevance


Marking notes:

MP = methyl propanoate; EE = ethyl ethanoate

Identification of peaks on graphs were also marked when justification was insufficient in written response.

Generally, well done. The following items were NOT marked down BUT:

- Good practice to use units (e.g., 184 **ppm**)
- Good practice to refer to datasheet when making claims about peaks
- Good practice to read IR peak as value at the bottom of the peak.

Page 28

Justification:	
Mass Spec:	
- M+ peach = 88 is consistent with to molar mass of	
formula C2 H8 Oz of both companies	
- 18 peak corresponds to common fragment [2-4] of both	
compounds. 73 peak represents corresponding opposite fragment =	38-1
Composition information:	
- C: H: 0 = 54.5%: 9.2%: 36.3% = 48:8:32 distribution	
of notor mass in the formula C4 H8 Oz of both compounds	,
- carboxylix acits are highly soluble in water one to	
heir polar carboxylic acid functional group, whose	
hydroxyl group hydrogen bonels with the winter, supporting	
a carboxylic acid conclusion for A	
- esters often smell sweet, and ten becker estrong	
hydrogen bonding on weeks SIMF - Stow polar C-0	
and C=0 bands mean they have higher IMF => higher	
b.p. and so are other liquids at room temp, supporting	7
an ester conclusion for B.	
13 C NMR: Please see sourcement assignments exfort page of	
anerloaf, *	
A1 - three peaks Consistent with three carbon environments	
- (b) environment & peak greatly downshifted due to participation	
m carbonylic acid group, into the 160-185 parange	
cheracteristic of this (by data steet). Similar	
reasoning for B's environment and peach (b).	
B: - for peaks consistent with for outon environments	
- (c) environment & peak alourshifted to range 50-90 ppm	
- @ environment & peak alourshifted to range 50-90 ppm characteristic of participation in C-0 bond (by data sh	eet)
lease see next page for futer justification	

Compound A: Name 2-methyl proparoic acid

Compound B: Name ethyl ethancate

9

Structure of B

IR spec: Please see annotation on spectroscopy page.

A: - large broad peak around 3000 cm² overlapping with C-H
peaks. This is characteristic of the O-H bond in acids,
via data sheet; consistent with a carboxylic acid conclusion for A.

ARB: - both ARB centerin a large peak would 1700 cm within

the characteristic range of a curbonyl band C=0 (1680-1750 cm',

by data sheet).

- Neiter A nor B contain any additional notewants peaks outside to

14 NMR: Please see environment & peach adjusted where it or spectroscopy page.

- 3 had more peachs and environments

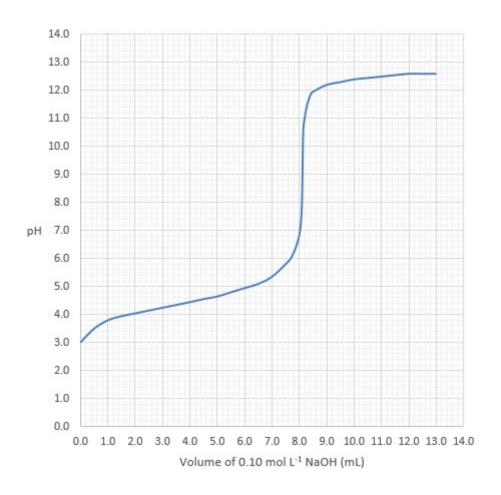
a single hydrogen's

a single hydrogen's a singlet of integred 1, consistent with the participation in a cool group. Its downshifting to approx 12 ppm is also consistent with participation in COOH group (9.0-13.0 range from given the NMR data)

- @ is a multiplet: likely a messy haptet vice the n+1 rule (adjuced to 6 hydrogens).

If here integral I due to singular hydrogen and it slightly more downshifted then @ due to proximity to the deshielding cooth group.

- D has integral 6, consistent w/ 6 hydrogens in this environment. It is a doublet, consistent with adjacency to 1 hydrogen view not rule.


please see the "HNMR chemical shift data page for B's "HNMR justification.

¹H NMR chemical shift data

Type of proton	δ/ppm
Si(CH ₃) ₄ (TMS)	0
R–C H ₃	0.9–1.0
R-C H ₂-R	1.2–1.5
R–C H R₂	1.5–2.0
R–C≡C– H (alkyne)	2.0–3.1
–CO–C H ₂– (aldehydes, ketones or esters)	2.1-2.7
R-C H ₂ -NH ₂	2.4–3.0
$R-CH_2-X$ (X = F, Cl, Br, I)	3.0–4.5
–C H ₂–O– (alcohols, ethers or esters)	3.3–4.8
R-O H	1–6
R–N H ₂	1–5
R₂C=C H R (alkene)	4.5–7.0
R-COON H -R (amide)	5–9
Ar- H (aromatic)	6.9–9.0
R-C H O (aldehyde)	9.4–10.0
R-COO H	9.0–13.0

- 14 NMR of B: 3 hydrogen peaks and environments
 - integration data of @: @: @= I: I.S: 15 2:3:3 supports The 2:3:3 ratio of thydrogers in each of tese environments.
 - @ is a singlet, consistent via to n+1 rule with adjacency to no oter hydrogen environments.
 - @ downshifted to approx 4ppm, consistent with the 3-3-4.8 ppm range given above for adjacency to C-O bond in te ester B. It is a quartet (multiplicity 4), consistent via te n+1 rule to adjacancy to 3 hydrogers in environment @.
 - (d) is a triplet, consistent via the n+1 rule with advancey to 2 hydregans in environment (E)

The following graph shows how the pH changes during the titration of 25.00 mL of a solution of a weak monoprotic acid (HA) with NaOH.

(a) Using the graph, identify the pH at the equivalence point.

Paid range 8.4-9.2

(b) Bromocresol purple is an indicator that changes from yellow to violet over the range 5.2 – 6.6. If bromocresol purple was used to detect the end point of this titration, what effect, if any, would this have on the calculated concentration of HA compared to its actual concentration?

Less than actual

(Explanation - V decrease from graph; so n(OH) decrease; so $n(H^+)$ decrease; so c(HA) decreases) - not required in answer

1

1

(c) Calculate the pK_a value of the HA acid. Give your answer to 2 decimal places.

Marks	Criteria
5	 Reads volume at equivalence points as 8.2 mL Chooses a suitable point on graph to use in calculations Takes any equilibrium shift into account in calculation
	Calculates pKa as 4.50 to 2 d.p.
4	As above less one point
3	As above less two points
2	Any two correct calculations – with working shown
1	Any relevant information

- Note it was possible to calculate 4.50 but not get full marks if errors or working not shown.
- Many marks were not lost by not showing working.
- Do not round too soon.

Codes used in marking:

Code	Meaning
IPC	inflection point chosen when it is impossible to read graph accurately when pH changing so quickly (usually ended up with a pKa = 5.61)
E	Errors

Sample Answer – but other points can be chosen

From titration curve, V(NaOH at equivalence point) =
$$8.2 \text{ mL}$$

n(NaOH) = $n(OH^-)$ = $Vc = 0.0082 \times 0.1 = 8.2 \times 10^{-4} \text{ mol} = n(H^+) = n(HA)$

Initial [HA] =
$$n/V = 8.2 \times 10^{-4} / 0.025 = 3.28 \times 10^{-2} M$$

Initial [H+] = $10^{-pH} = 1 \times 10^{-3} M$ (since curve starts at pH = 3)

HA
$$\rightleftharpoons$$
 H⁺ + A⁻
I 3.28 x 10⁻² 0 0
C -0.001 +0.001 +0.001
E 3.18 x 10⁻² 0.001 0.001

$$K_a = [H^+][A^-] / [HA] = (0.001)^2 / 3.18 \times 10^{-2} = 3.14 \times 10^{-5}$$

p $K_a = -\log K_a = 4.50$