HSC Trial Examination 2020

Mathematics Standard 2

Solutions and marking guidelines

Section I

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question $1 \quad$ D The travel route is a walk (a connected sequence of edges showing a route between vertices and edges). The travel route is not a cycle nor a path since the vertices are repeated, so \mathbf{A} and \mathbf{B} are incorrect. It is not a trail since the edges are repeated, so \mathbf{C} is incorrect.	MS-N2 Network Concepts MS2-12-8 Bands 1-2
Question 2 $\begin{aligned} \text { fuel used } & =7 \mathrm{~L} \text { for } 100 \mathrm{~km} \\ & =\frac{7}{100} \text { for } 1 \mathrm{~km} \\ & =\frac{7}{100} \times 382 \\ & =26.74 \mathrm{~L} \end{aligned}$	MS-M7 Rates and Ratios MS2-12-3 Bands 1-2
Question 3 C	MS-S5 The Normal Distribution MS2-12-7 Bands 2-3

$$
\begin{aligned}
z & =\frac{x-\bar{x}}{s} & z & =\frac{x-\bar{x}}{s} \\
& =\frac{66-72}{6} & & =\frac{78-72}{6} \\
& =-1 & & =1
\end{aligned}
$$

MS2-12-7
Bands 2-3

MS-S1 Data Analysis
MS-11-4
Bands 2-3
There are 30 scores. The median is the average of the 15 th (33) and 16 th (34) score. Therefore, the median is 33.5 .

$$
\begin{aligned}
\text { earnings } & =2 \times 8 \times 19.20+6 \times 1.5 \times 19.20 \\
& =\$ 480
\end{aligned}
$$

Evelyn earned $\$ 480$ in total for working Thursday, Friday and Saturday.

Bands 3-4

Answer and explanation

Syllabus content, outcomes and targeted performance bands

$$
\begin{aligned}
& \hline \text { Question 7 B } \\
& \begin{aligned}
F V & =P V(1+r)^{n} \\
& =1600 \times\left(1+\frac{0.08}{4}\right)^{3 \times 4} \\
& \approx \$ 2029.19 \\
I & =F V-P V \\
& =\$ 2029.19-\$ 1600 \\
& =\$ 429.19
\end{aligned}
\end{aligned}
$$

Liam will receive $\$ 429.19$ compound interest.

Question 8	B	MS-S4 Bivariate Data Analysis

The relationship is a strong positive correlation (small amount
riate Data Analysis MS2-12-7

Bands 2-3 of scatter and a line with a positive gradient).

| Question 9 A | MS-A4 Types of Relationships |
| :--- | :--- | :--- |
| MS2-12-6 | Bands 3-4 |

$y=2^{-x}$ is an exponential function. Check $(0,1)$ and $(-1,2)$ on each graph.

$$
\begin{aligned}
& \hline \text { Question 10 } \\
& \frac{170}{p}=\frac{10}{32} \\
& 10 p=5440 \\
& p=544
\end{aligned}
$$

$$
\bar{B}
$$

The estimate of the parrot population is approximately 544.

Question 11

C

Hours per week	Class centre	Frequency
$0-4$	2	5
$5-9$	7	10
$10-14$	12	3
$15-19$	17	2

$$
\begin{aligned}
\text { mean } & =\frac{\Sigma f x}{n} \\
& =\frac{2 \times 5+7 \times 10+12 \times 3+17 \times 2}{20} \\
& =7.5 \text { hours }
\end{aligned}
$$

MS-S1 Data Analysis

Answer and explanation

Question 12

$r=\frac{2 \%}{2}=1 \%$
$n=2 \times 2=4$
The intersection value is 4.0604 .
$F V=4.0604 \times 80000$ $=\$ 324832$

Question 14

A

The graphs of the two equations are as follows.

Alternatively, substitute each answer into the equations. So $\mathbf{A}(11,1)$:

$$
\begin{array}{r}
x+4 y=15 \\
11+4 \times 1=15
\end{array}
$$

$$
3 x-5 y=28
$$

$$
3 \times 11-5 \times 1=28
$$

Syllabus content, outcomes and targeted performance bands

MS-F5 Annuities

MS-M6 Non-right-angled Trigonometry MS2-12-3

Bands 4-5

MS-A4 Types or Relationships MS2-12-6

Bands 4-5

Answer and explanation

Question 15 D

The critical path is $A \rightarrow C \rightarrow F \rightarrow I$.

The minimum completion time is 52 .

Syllabus content, outcomes and targeted performance bands
 MS-N3 Critical Path Analysis MS2-12-8
 Bands 5-6

Section II

Sample answer

Syllabus content, outcomes, targeted

 performance bands and marking guide(b)

$$
m=\frac{\text { rise }}{\text { run }}=\frac{30}{5}=6
$$

The y-intercept of the cost line is $\$ 30$.

$$
y=m x+c
$$

$$
C=6 n+30
$$

(c) profit $=(12 \times 7)-(6 \times 7+30)$

$$
=\$ 12
$$

MS-A4 Types of Relationships MS2-12-6

Bands 2-3

- Gives the correct answer 1
(d) $\quad n=5 \mathrm{t}$-shirts (the point of intersection on the graph)

MS-A4 Types of Relationships MS2-12-6

Bands 1-2

Question 19

The shortest path is $D \rightarrow E \rightarrow F \rightarrow H \rightarrow I \rightarrow G \rightarrow D$.

$$
\text { length }=13+17+9+10+14+12
$$

The shortest average completion time is 75 minutes.

```
MS-A4 Types of Relationships
MS2-12-6
                                    Bands 2-3
```

- Gives the correct answer 1
- Gives the correct answer 1

MS-N2 Network Concepts
MS2-12-8
Bands 4-5

- Gives the correct answer 3
- Makes significant progress 2
- Shows understanding of the shortest path 1

$$
=75 \mathrm{~min}
$$

Question 20	
S	$=V_{0}(1+r)$
	$=19990(1-0.18)^{4}$
	$=9037.9139 \ldots$
	$\approx \$ 9038$

The salvage value after four years is $\$ 9038$.

Question 21

(a) Leaking at 0.25 litres per minute, $m=-0.25$.

Initially, at $t=0, V=10 \mathrm{~L}$.

$$
\begin{aligned}
y & =m x+c \\
V & =m t+c \\
& =-0.25 t+10
\end{aligned}
$$

(b) $t=90 \mathrm{~s}$ or 1.5 min

$$
\begin{aligned}
V & =-0.25 t+10 \\
& =-0.25 \times 1.5+10 \\
& =9.625 \mathrm{~L}
\end{aligned}
$$

There are 9.625 litres of water remaining.
(c) All the water leaks out when $V=0$.

$$
\begin{aligned}
& V=-0.25 t+10 \\
& 0=-0.25 t+10
\end{aligned}
$$

MS-A4 Types of Relationships
MS2-12-6
Bands 3-4

- Gives the correct answer.

$$
0.25 t=10
$$

- Shows some understanding

$$
t=40 \mathrm{~min}
$$ of the problem. .1

It would take 40 minutes for all the water to leak out.

Question 22

$$
\begin{aligned}
B A C_{\text {Female }} & =\frac{10 N-7.5 H}{5.5 M} \\
& =\frac{10 \times(2 \times 0.8+3 \times 1.5)-7.5 \times 5}{5.5 \times 66} \\
& =0.0647 \ldots \\
& \approx 0.065
\end{aligned}
$$

MS-A1 Formulae and Equations
MS-11-6
Bands 2-3

- Gives the correct answer. 2
- Substitutes TWO correct values into the $B A C$ formula .1

Alexis' blood alcohol content (BAC) at midnight is 0.065 .
Question 23

(a) | t | $=\frac{k}{n}$ | t | $=\frac{21}{n}$ |
| ---: | :--- | ---: | :--- |
| 7 | $=\frac{k}{3}$ | | $=\frac{21}{4}$ |
| k | $=21$ | | $=5.25$ days |

It would take 5.25 days for four workers to lay the timber floor.

MS-F4 Investments and Loans

MS2-12-5
Bands 1-2

- Gives the correct answer. 2
- Substitutes TWO correct values into the declining-balance formula1

MS-A4 Types of Relationships
MS2-12-6
Bands 2-3

- Gives the correct answer.
. 1

MS-A4 Types of Relationships
MS2-12-6
Bands 2-3

- Gives the correct answer.
-

Bands 2-3
\ldots. 1

Syllabus content, outcomes, targeted performance bands and marking guide

Sample answer

Syllabus content, outcomes, targeted performance bands and marking guide

(b) $t=\frac{21}{n}$

MS-A4 Types of Relationships
MS2-12-6
Bands 3-4
$1=\frac{21}{n}$
$n=21$ workers
Twenty-one workers would be required to lay the timber floor in one day.

- Gives the correct answer 1

Question 24

(a) The precision or limit of reading is 100 kg .

MS-M1 Applications of Measurement
MS-11-7 Bands 1-2

- Gives the correct answer 1
(b) absolute error $=\frac{1}{2} \times$ precision

MS-M1.1 Practicalities of measurement MS-11-7

Bands 2-3

$$
\begin{aligned}
& =\frac{1}{2} \times 100 \\
& =50 \mathrm{~kg}
\end{aligned}
$$

(c) upper bound $=$ measurement + absolute error	MS-M1.1 Practicalities of measurement
MS-11-7	Bands 2-3

$$
\begin{aligned}
& =1800+50 \\
& =1850 \mathrm{~kg} \\
\text { lower bound } & =\text { measurement }- \text { absolute error } \\
& =1800-50 \\
& =1750 \mathrm{~kg}
\end{aligned}
$$

$\text { (d) } \begin{aligned} \text { percentage error } & = \pm \frac{50}{1800} \times 100 \\ & = \pm 2.777 \\ & \approx \pm 2.8 \% \end{aligned}$	MS-M1.1 Practicalities of measurement MS-11-7 Bands 3-4 - Gives the correct answer \qquad
Question 25	
(a)	MS-M6 Non-right-angled Trigonometry MS2-12-3 Bands 1-2 - Gives the correct answer \qquad

Sample answer

Syllabus content, outcomes, targeted performance bands and marking guide

(b) $a^{2}=b^{2}+c^{2}-2 b \cos A$

MS-M6 Non-right-angled Trigonometry
MS2-12-3 Bands 3-4

- Gives the correct answer.
r. 2
- Uses the cosine rule with at least

ONE correct value 1

MS-M6 Non-right-angled Trigonometry
MS2-12-3 Bands 4-5

- Gives the correct answer. 2
- Uses the sine rule with at least ONE correct value \qquad

$$
\begin{aligned}
\angle A C B & =25.3369 \ldots \\
& \approx 25^{\circ}
\end{aligned}
$$

The true bearing of B from C is $074^{\circ} \mathrm{T}\left(49^{\circ}+25^{\circ}\right)$.

Question 26

$$
\begin{aligned}
N & =1000\left(2.1^{t}\right) \\
& =1000 \times 2.1^{5} \\
& =40841.01 \\
& \approx 40841
\end{aligned}
$$

After five years, the population of the town is 40841 .

Question 27

(a) inflow for vertex $E=23+78=101 \mathrm{~L}$
possible outflow for vertex $E=118 \mathrm{~L}$
The inflow is less than the possible outflow.
Therefore, the outflow for vertex E is 101 L .
(b)

MS-N3 Critical Path Analysis
MS2-12-8
Bands 4-5

- Gives the correct answer. 2
- Shows some understanding of the problem.
MS-N3 Critical Path Analysis MS2-12-8

Bands 3-4

- Gives the correct answer. 1
\qquad

MS-N3 Critical Path Analysis
MS2-12-8
Bands 3-4

- Gives the correct answer. 1

The maximum flow of the network is 149 litres.

Sample answer	
Question 28	
maximum heart rate (MHR)	$=220-$ age (years)
	$=220-18.25$
	$=201.75$

heart rate when Maya begins exercising $=0.58 \times 201.75$

$$
\begin{aligned}
& =117.015 \\
& \approx 117 \mathrm{bpm}
\end{aligned}
$$

Maya's heart rate is estimated to be 117 bpm when she begins exercising.

Question 29

daily interest rate $=\frac{15.7}{365}$
MS-F4 Investments and Loans MS2-12-5

Bands 3-4

$$
\begin{aligned}
& =0.043013 \ldots \\
& \approx 0.0430 \%
\end{aligned}
$$

interest $=1240 \times 0.0403 \times 12$

$$
=6.4004 \ldots
$$

$$
\approx \$ 6.40
$$

total paid $=1240+6.40$

$$
=\$ 1246.40
$$

The total amount paid is $\$ 1246.40$.

Question 30	
$\begin{aligned} \text { expected frequency } & =n p \\ & =0.6 \times 200 \\ & =120 \text { seeds } \end{aligned}$	MS-S2 Relative Frequency and Probability MS-11-8 Bands 2-3 - Gives the correct answer 2 - Shows some understanding of the problem \qquad
Question 31	
(a) The intersection value is 3.7908 (10% and 5 years). $\begin{aligned} P V & =3.7908 \times 15000 \\ & =\$ 56862 \end{aligned}$	MS-F5 AnnuitiesMS2-12-5Bands 1-2 - Gives the correct answer 1
(b) The intersection value is 3.9020 (1% and 4 years). $\begin{aligned} P V & =3.9020 \times 10000 \\ & =\$ 39020 \end{aligned}$	MS-F5 AnnuitiesMS2-12-5Bands 3-4 - Gives the correct answer 1
(c) The intersection value is 2.5771 (8% and 3 years). $\begin{aligned} 52217 & =x \times 2.5771 \\ x & =\frac{52217}{2.5771} \\ & =20261.9223 \ldots \\ & \approx \$ 20262 \end{aligned}$ The value of the annuity is $\$ 20262$ per year.	MS-F5 AnnuitiesMS2-12-5Bands 4-5 - Gives the correct answer 1

Question 32

time	$=\frac{4000 \mathrm{~L}}{5 \mathrm{~min}}$
	$=800 \mathrm{~min}$
	$=\frac{800}{60} \mathrm{~h}$
	$=13.3333 \ldots \mathrm{~h}$
	$=13 \mathrm{~h} 20 \mathrm{~min}$

The tank will be emptied in 13 hours 20 minutes.
Question 33
(a)

The sample space is $\{34,35,43,45,53,54\}$.

(b) $P(55)=0$ (Numbers are not repeated.)	MS-S2 Relative Frequency and Probability MS-11-8 Bands 1-2 - Gives the correct answer.
(c) $\quad P(35)=\frac{n(35)}{n(S)}=\frac{1}{6}$	MS-S2 Relative Frequency and Probability MS-11-8 Bands 2-3 - Gives the correct answer. 1
(d) The sample space is $\{33,34,35,43,44,45,53,54,55\}$. $P(35)=\frac{1}{9}$	MS-S2 Relative Frequency and Probability MS-11-8 Bands 3-4 - Gives the correct answer. \qquad
Question 34	
$\begin{aligned} c & =\bar{y}-m \bar{x} \\ & =85-0.4 \times 60 \\ & =61 \end{aligned}$ The y-intercept is 61 .	MS-S4 Bivariate Data Analysis MS2-12-7 Bands 3-4 - Gives the correct answer.
Question 35	
(a) The standard deviation is 10 kg .	MS-S5 The Normal Distribution MS2-12-7 Bands 2-3 - Gives the correct answer.
(b) Sixty-eight percent of scores have a z-score between -1 and 1 (or from 60 kg to 80 kg). $\text { region } \mathrm{A}=\frac{68 \%}{2}=34 \%$	MS-S5 The Normal Distribution MS2-12-7 Bands 3-4 - Gives the correct answer.

Sample answer

Syllabus content, outcomes, targeted performance bands and marking guide

(c) A student with a z-score of -2 is two standard deviations below the mean $70-(2 \times 10)=50$.

MS-S5 The Normal Distribution
MS2-12-7
Bands 3-4
The weight of the student would be 50 kg .
(d) $z=\frac{x-\bar{x}}{s}=\frac{100-70}{10}=3$

The percentage of scores less than a z-score of 3 is 99.85%.
number of students $=99.85 \% \times 500$

$$
\begin{aligned}
& =499.25 \\
& =499
\end{aligned}
$$

- Gives the correct answer 1

MS-S5 The Normal Distribution
MS2-12-7
Bands 5-6

- Gives the correct answer
- Finds the z-score OR shows some understanding of the problem 1

There are 499 students with a mass less than 100 kg .

Question 36	
(a)	MS-S4 Bivariate Data Analysis MS2-12-7
	Mands 2-3

$$
\begin{aligned}
m & =\frac{\text { rise }}{\text { run }} \\
& =-\frac{40}{100} \\
& =-0.4
\end{aligned}
$$

- Gives the correct answer . 1

The gradient is -0.4
(b) The y-intercept is 85 .
$y=m x+c$
$c=-0.4 d+85$
(c) The correlation coefficient is approximately -0.8 (small amount of scatter and a line with a negative gradient).

MS-S4 Bivariate Data Analysis
MS2-12-7
Bands 1-2
Note: Any value between -0.9 and -0.7 is acceptable.
MS-S4 Bivariate Data Analysis
MS2-12-7
Mands 3-4

- Gives the correct answer 1

	Sample an
Question 37	
Use z-scores to compare results.	
$z=\frac{x-\bar{x}}{s}$	$z=\frac{x-\bar{x}}{s}$
$=\frac{71-83}{6}$	$=\frac{66-76}{10}$
$=-2$	$=-1$

We can determine that Samuel's performance improved because his z-score increased.

Question 38

(a) total amount repaid = monthly repayment \times number of repayments
$=3318 \times 20 \times 12$

$$
=\$ 796320
$$

The total amount to be repaid if the loan were taken over 20 years is $\$ 796320$.
(b) total amount repaid $=$ monthly repayment \times number of repayments

$$
\begin{aligned}
& =3034 \times 25 \times 12 \\
& =\$ 910200
\end{aligned}
$$

MS-F4 Investments and Loans
MS2-12-5
Bands 3-4

- Gives the correct answer. 2
- Finds the total amount to be repaid if the loan were taken over 25 years. 1

$$
=\$ 113880
$$

MS-F4 Investments and Loans
MS2-12-5 Bands 2-3

- Gives the correct answer. 1

The extra amount to be repaid would be $\$ 113880$.

Question 39

(a) The intersection value is 3.3744 (12\% per year for 3 years).

$$
\begin{aligned}
F V & =3.3744 \times \$ 17200 \\
& =\$ 58039.68 \\
& \approx \$ 58040
\end{aligned}
$$

(b) The intersection value is 5.1010 (1% per month for 5 months).

MS-F5 Annuities
MS2-12-5
Bands 1-2

- Gives the correct answer. 1
$F V=5.1010 \times 900$
MS-F5 Annuities
MS2-12-5
Bands 3-4
- Gives the correct answer.
$=\$ 4590.90$
$\approx \$ 4591$

Question 40

(a) distance $=4+5+7+5$

$$
=21 \mathrm{~km}
$$

The distance to travel $A B C D E$ is 21 km .
(b) The vertices with an even degree are C, F, G and H.

MS-N2 Network Concepts MS2-12-3 - Gives the correct answer	Bands 3-4
MS-N2 Network Concepts MS2-12-3 - Gives the correct answer	Bands 1-2 1

Sample answer

Syllabus content, outcomes, targeted performance bands and marking guide

(c)

shortest distance $=4+1$

$$
=5 \mathrm{~km}
$$

The shortest distance to travel from C to F is 5 km .
(d)

$$
\begin{aligned}
\text { length } & =4+5+3+2+1+5+5 \\
& =25 \mathrm{~km}
\end{aligned}
$$

The length of the spanning tree is 25 km .
Note: The following is an alternative solution.

Question 41

(a)

t	0	1	2	3	4	5	6
h	0	5	8	9	8	5	0

MS-N3 Critical path analysis MS2-12-3

Bands 4-5

- Gives the correct answer 1

MS-N3 Critical path analysis
MS2-12-3
Bands 5-6

- Gives the correct answer 3
- Finds the minimum spanning tree 2
- Calculates the correct length from an incorrect spanning tree \qquad . 1

Sample answer

Syllabus content, outcomes, targeted performance bands and marking guide
(b)

(c) From the graph, the maximum height reached is 9 metres.

MS-A4 Types of Relationships MS2-12-6

Bands 2-3

- Gives the correct answer. 1
(d) From the graph, the maximum height is reached at 3 seconds.

MS-A4 Types of Relationships
MS2-12-6
Bands 2-3

- Gives the correct answer. 1

Question 42

(a) electricity $=160 \times 24 \times 7$

$$
\begin{aligned}
& =26880 \mathrm{~Wh} \\
& =26.88 \mathrm{kWh} \\
& \approx 27 \mathrm{kWh}
\end{aligned}
$$

The refrigerator uses 27 kWh .
(b) cost $=26.88 \times 0.41$

$$
\begin{aligned}
& =11.0208 \\
& \approx \$ 11.02
\end{aligned}
$$

The cost of using the refrigerator is $\$ 11.02$.

Question 43

(a)

(b) The minimum time for the project is 40 hours.

MS-A4 Types of Relationships
MS2-12-6
Bands 3-4

- Gives the correct answer. 1

MS-M7 Rates and Ratios
MS2-12-3
Bands 1-2

- Gives the correct answer. 1

MS-M7 Rates and Ratios
MS2-12-3
Bands 3-4

- Gives the correct answer. 1
MS-N3 Critical Path Analysis
MS2-12-8 Bands 5-6
- Gives the correct answer. \qquad
- Connects THREE vertices correctly OR equivalent merit

MS-N3 Critical Path Analysis	
MS2-12-8 $\bullet \quad$ Gives the correct answer.	

- Gives the correct answer. 1

Sample answer

(c) float time $=\mathrm{LST}-\mathrm{EST}$

$$
\begin{aligned}
& =35-27 \\
& =8 \mathrm{~h}
\end{aligned}
$$

Syllabus content, outcomes, targeted performance bands and marking guide
MS-N3 Critical Path Analysis
MS2-12-8
Bands 4-5

- Gives the correct answer

The float time for activity G is 8 hours.

