Neap

Trial Examination 2022

HSC Year 12 Mathematics Extension 1

Solutions and Marking Guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION I	
Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 1 C	ME–T2 Further Trigonometric Identities
$\tan\left(\theta + \frac{\pi}{3}\right) = \frac{\tan\theta + \tan\frac{\pi}{3}}{1 - \tan\theta\tan\frac{\pi}{3}}$	ME11–1 Band E2
$=\frac{\frac{1}{3}+\sqrt{3}}{1-\frac{\sqrt{3}}{3}}\times\frac{3}{3}$	
$=\frac{1+3\sqrt{3}}{3-\sqrt{3}}$	
Alternatively:	
$\tan\theta = \frac{1}{3}$	
$\theta = \tan^{-1}\left(\frac{1}{3}\right)$	
= 0.32175	
Going through each option to check gives:	
Option A:	
$\tan\left(\theta + \frac{\pi}{3}\right) = \frac{\sqrt{3} + 3}{3\sqrt{3} - 1}$	
$\theta + \frac{\pi}{3} = \tan^{-1}\left(\frac{\sqrt{3}+3}{3\sqrt{3}-1}\right)$	
$\theta = -0.20184\ldots$	
Option B : $\tan\left(\theta + \frac{\pi}{3}\right) = \frac{\sqrt{3} - 3}{3\sqrt{3} + 1}$	
$\theta + \frac{\pi}{3} = \tan^{-1} \left(\frac{\sqrt{3} - 3}{3\sqrt{3} + 1} \right)$ $\theta = -1.24904$	
Option C: $\tan\left(\theta + \frac{\pi}{3}\right) = \frac{1 + 3\sqrt{3}}{3 - \sqrt{3}}$	
$\theta + \frac{\pi}{3} = \tan^{-1}\left(\frac{1+3\sqrt{3}}{3-\sqrt{3}}\right)$	
$\theta = 0.32175$	
(continues on next page)	I

SECTION I

Answer and explanation	Syllabus content, outcomes and targeted performance bands
(continued)	
Option D :	
$\tan\left(\theta + \frac{\pi}{3}\right) = \frac{1 - 3\sqrt{3}}{3 + \sqrt{3}}$	
$\theta + \frac{\pi}{3} = \tan^{-1} \left(\frac{1 - 3\sqrt{3}}{3 + \sqrt{3}} \right)$	
$\theta = -1.77265$	
Therefore, C is correct.	
Question 2 A Let $u = (\ln x)^2$.	ME–C2 Further Calculus Skills ME12–1 Bands E2–E3
$\therefore du = 2\left(\ln x\right) \times \frac{1}{x} dx$	
Note: Although the limits are the same for each option, the limits should always be changed when using the substitution method.	
When $x = e$, $u = (\ln e)^2$	
=1	
When $x = e^2$, $u = (\ln e^2)^2$	
=4	
Rewriting the integral gives:	
$\int_{e}^{e^{2}} \frac{(\ln x)^{3}}{x} dx = \frac{1}{2} \int_{e}^{e^{2}} (\ln x)^{2} \frac{2(\ln x)}{x} dx$	
$\therefore \frac{1}{2} \int_{1}^{4} u du$	
Question 3 C	ME–C2 Further Calculus Skills
$\int \frac{4}{\sqrt{9-x^2}} dx = 4 \int \frac{1}{\sqrt{(3)^2 - x^2}} dx$	ME12–1 Bands E2–E3
$=4\sin^{-1}\left(\frac{x}{3}\right)+c$	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 4 B	ME–V1 Introduction to Vectors
$\frac{u}{\psi}$	ME12–2 Bands E2–E3
As shown on the diagram through vector addition, u + v + w = 2v. $\therefore u \cdot (u + v + w) = u \cdot 2v$ $u \cdot 2v$	
$\cos \theta = \frac{\underline{u} \cdot 2\underline{v}}{ \underline{u} 2\underline{v} }$ $\therefore \underline{u} \cdot 2\underline{v} = \underline{u} 2\underline{v} \cos \theta$	
Since all the triangles are equilateral,	
$\theta = \frac{\pi}{3}, \underline{u} = 4 \text{ and } 2\underline{v} = 8.$	
$\therefore \underline{u} \cdot 2\underline{v} = 4 \times 8 \times \cos\frac{\pi}{3}$	
=16	
Question 5 A	ME–C3 Applications of Calculus
A is correct. This option is reached through a process of elimination. When $x = 1$ and $y = 1$, the gradient is 0. Therefore, we can eliminate B and C . When $x = -1$ and y = 1, the gradient is negative. Therefore, we can eliminate D , leaving A as the only viable option.	ME12–4 Bands E2–E3

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 6 D For points of intersection, let $f(x) = g(x)$. $x^{3} - 2x^{2} + 3 = x^{3} + 3x^{2} - 2$ $5x^{2} = 5$ $x^{2} = 1$ $\therefore x = -1, 1$ area $= \int_{-1}^{1} (x^{3} - 2x^{2} + 3) - (x^{3} + 3x^{2} - 2) dx$ $= \int_{-1}^{1} x^{3} - 2x^{2} + 3 - x^{3} - 3x^{2} + 2 dx$ $= \int_{-1}^{1} -5x^{2} + 5 dx$	ME-C3 Applications of Calculus ME12-1 Bands E2-E3
-1 Question 7 D $2 \cos x - 3 \sin x = R \cos(x + \theta)$ $= R \cos x \cos \theta - R \sin x \sin \theta$ Equating both sides: $2 \cos x = R \cos x \cos \theta$ and $3 \sin x = R \sin x \sin \theta$ Therefore: $R \cos \theta = 2$ (1) $R \sin \theta = 3$ (2) $\frac{(2)}{(1)}$ $\therefore \tan \theta = \frac{3}{2}$	ME-T3 Trigonometric Equations ME12-3 Bands E2-E3
Question 8 C The 'worst-case scenario' is if five students receive an A grade, five students receive a B grade, five students receive a C grade, five students receive a D grade and five students receive an E grade. The next student must receive a grade of A, B, C, D, or E, so that they will be the sixth student to receive that grade. $\therefore 5 \times 5 + 1 = 26$ students	ME–A1 Working with Combinatorics ME11–5 Bands E2–E3

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 9 B	ME–V1 Introduction to Vectors
For $p_{\tilde{q}}$ and $q_{\tilde{q}}$ to be parallel:	ME12–2 Bands E2–E3
p = kq, where k is a constant.	
$\binom{t-8}{6} = k \binom{3}{2t}$	
t - 8 = 3k (1)	
$6 = 2kt \qquad (2)$	
From (2):	
$k = \frac{3}{t} \tag{3}$	
Substituting (3) into (1):	
$t - 8 = 3\left(\frac{3}{t}\right)$	
$t^2 - 8t = 9$	
$t^2 - 8t - 9 = 0$	
(t-9)(t+1) = 0	
t = -1, 9	
Question 10 C	ME-A1 Working with Combinatorics
5 glasses: $\begin{pmatrix} 9\\5 \end{pmatrix}$	ME11–5 Bands E2–E3
4 glasses, 1 no glasses: $\begin{pmatrix} 9 \\ 4 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \end{pmatrix}$	
3 glasses, 2 no glasses: $\binom{9}{3} \times \binom{3}{2}$	
$total = \begin{pmatrix} 9\\5 \end{pmatrix} + \begin{pmatrix} 9\\4 \end{pmatrix} \times \begin{pmatrix} 3\\1 \end{pmatrix} + \begin{pmatrix} 9\\3 \end{pmatrix} \times \begin{pmatrix} 3\\2 \end{pmatrix}$	
= 756	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 11	
(a)	$P(x) = 8x^{4} - 38x^{3} + 9x^{2} + ax + b$ $P(3) = 0 \text{ and } P'(3) = 0$ $P(3) = 8(3)^{4} - 38(3)^{3} + 9(3)^{2} + 3a + b$ $0 = 648 - 1026 + 81 + 3a + b$ $3a + b = 297 (1)$ $P'(x) = 32x^{3} - 114x^{2} + 18x + a$ $P'(3) = 32(3)^{3} - 114(3)^{2} + 18(3) + a$ $0 = 864 - 1026 + 54 + a$ $a = 108$ Substitute $a = 108$ into (1): 3(108) + b = 297	ME-F2 Polynomials ME11-1Bands E2-E3• Provides the correct solution
	b = -27	

SECTION II

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b) $\binom{5n+3}{5n+1} = \frac{(5n+3)!}{(5n+3-(5n+1))!(5n+1)!}$ $= \frac{(5n+3)!}{(2)!(5n+1)!}$ $= \frac{(5n+3)(5n+2)(5n+1)!}{2(5n+1)!}$ $= \frac{(5n+3)(5n+2)}{2} \ge 528$ $25n^2 + 25n + 6 \ge 1056$ $n^2 + n - 42 \ge 0$ $(n-6)(n+7) \ge 0$ Sketching the graph of $(n-6)(n+7) \ge 0$ gives: y $\sqrt[3]{-7}$ Reading from the graph, the sections where $y \ge 0$ occur when $x \le -7$ and $x \ge 6$. Therefore, $n \le -7$, $n \ge 6$.	ME-A1 Working with Combinatorics ME11-5Bands E2-E3• Provides the correct solution3• Uses the formula for $\binom{n}{k}$ AND simplifies to the correct quadratic2• Uses the formula for $\binom{n}{k}$ AND makes some progress toward simplifying the correct quadratic1
As <i>n</i> is a positive integer, $n \ge 6$.	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c) (i) Volume of a cylinder: $V = \pi r^{2}h$ $= \pi \times 0.4^{2} \times h$ $= 0.16\pi h$ $\frac{dV}{dh} = 0.16\pi$ Using the chain rule: $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ $k\sqrt{h} = 0.16\pi \times \frac{dh}{dt}$ $0.16\pi \times \frac{1}{\sqrt{h}} \times \frac{dh}{dt} = k$ $0.16\pi \int \frac{1}{\sqrt{h}} dh = \int k dt$ $0.16\pi \int \frac{1}{\sqrt{h}} dh = \int k dt$ $0.16\pi \int \frac{1}{2} dh = kt + c$ $0.16\pi \left[\frac{h^{2}}{\frac{1}{2}}\right] = kt + c$ $0.32\pi\sqrt{h} = kt + c$ When $t = 0, h = 1$. $0.32\pi\sqrt{h} = kt + 0.32\pi$ $0.32\pi\sqrt{h} = kt + 0.32\pi$ When $t = 20, h = 0.36$. $0.32\pi\sqrt{0.36} = 20k + 0.32\pi$ $20k = -0.128\pi$ $k = -\frac{4}{625}\pi$	 ME-C1 Rates of Change ME-C3 Applications of Calculus ME11-4, 12-4 Bands E2-E4 Provides the correct solution

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii) $0.32\pi\sqrt{h} = -\frac{4}{625}\pi t + 0.32\pi$ When $h = 0$: $0.32\pi\sqrt{0} = -\frac{4}{625}\pi t + 0.32\pi$ $-\frac{4}{625}\pi t + 0.32\pi = 0$ $\frac{4}{625}\pi t = 0.32\pi$ t = 50 minutes Note: Consequential on answer to Question	ME-C1 Rates of Change ME11-4 Bands E2-E3 • Provides the correct solution 1
(d) $T_{7} = \begin{pmatrix} 9 \\ 6 \end{pmatrix} (2x)^{6} (-p)^{3}$ $= \begin{pmatrix} 9 \\ 6 \end{pmatrix} \times 64x^{6} \times -p^{3}$ $= -5376p^{3}x^{3}$ $-5376p^{3} = -672\ 000$ $p^{3} = 125$	ME-A1 Working with Combinatorics ME11-5Bands E2-E3• Provides the correct solution 2• Provides the correct solution of T_7
$p = 5$ (e) $y = \frac{1}{ f(x) }$ $y = f(x)$	ME-F1 Further Work with Functions ME11-1, 11-7Bands E2-E3• Provides the correct solution 3• Draws the graph of $\frac{1}{ f(x) }$ without turning points OR without asymptotes.OR• Draws the graph of $\frac{1}{f(x)}$ with turning points AND asymptotes

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 12	
(a) Step 1: Proving the statement is true for $n = 1$ gives: LHS = $1 \times 2^{-(1-1)}$ = 1	ME–P1 Proof by Mathematical Induction ME12–1 Bands E2–E3 • Provides the correct proof for all steps
$=1$ $RHS = \frac{2^{1+1} - 1 - 2}{2^{1-1}}$ $= \frac{4 - 1 - 2}{1}$ $= 1$ $LHS = RHS$ Therefore, the statement is true for $n = 1$. Step 2: Assuming the statement is true for $n = k$ gives: $1 + 2 \times 2^{-1} + 3 \times 2^{-2} + 4 \times 2^{-3}$ $+ \dots + k \times 2^{-(k-1)} = \frac{2^{k+1} - k - 2}{2^{k-1}}$ Step 3: Proving that the statement is true for $n = k + 1$ gives: $1 + 2 \times 2^{-1} + 3 \times 2^{-2} + 4 \times 2^{-3} + \dots + k \times 2^{-(k-1)}$ $+ (k + 1) \times 2^{-k} = \frac{2^{k+2} - (k + 1) - 2}{2^{k}}$ $= \frac{2^{k+2} - k - 3}{2^{k}}$ LHS = $1 + 2 \times 2^{-1} + 3 \times 2^{-2} + 4 \times 2^{-3} + \dots$ $+ k \times 2^{-(k-1)} + (k + 1) \times 2^{-k}$ $= \frac{2^{k+1} - k - 2}{2^{k-1}} + (k + 1) \times 2^{-k}$ (by assumption) $= \frac{2^{k+1} - k - 2}{2^{k-1}} + \frac{k + 1}{2^{k}}$	 For all steps

If n = k is true, then n = k + 1 is true. Therefore, by mathematical induction, the statement is true for $n \ge 1$.

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b) (i) $\frac{d}{dx}(-\cot x) = \frac{d}{dx}\left(-\frac{\cos x}{\sin x}\right)$ Let $u = -\cos x$ and $v = \sin x$. $\frac{du}{dx} = \sin x$ $\frac{dv}{dx} = \cos x$ Using the quotient rule gives: $\frac{d}{dx}\left(-\frac{\cos x}{\sin x}\right) = \frac{(\sin x)(\sin x) - (-\cos x)(\cos x)}{(\sin x)^2}$ $= \frac{\sin^2 x + \cos^2 x}{\sin^2 x}$	 ME-C2 Further Calculus Skills ME12-1 Bands E2-E3 Provides the correct solution 2 Attempts to the use quotient rule OR equivalent merit 1
$=\frac{1}{\sin^2 x}$	
(ii) Let $x = 4\sin\theta$ and $dx = 4\cos\theta d\theta$. When $x = 2$, $4\sin\theta = 2$. $\sin\theta = \frac{1}{2}$	ME-C2 Further Calculus SkillsME12-1Bands E2-E3• Provides the correct solution 4
$\theta = \frac{\pi}{6}$ When $x = 2\sqrt{3}$, $4\sin\theta = 2\sqrt{3}$.	• Finds the complete integrand in terms of θ
when $x = 2\sqrt{3}$, $4\sin\theta = 2\sqrt{3}$. $\sin\theta = \frac{\sqrt{3}}{2}$ $\theta = \frac{\pi}{3}$	• Finds $\frac{dx}{d\theta}$. AND • Changes the limits
$\int_{2}^{2\sqrt{3}} \frac{1}{x^2 \sqrt{16 - x^2}} dx$	• Finds $\frac{dx}{d\theta}$. OR
$= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{4\cos\theta}{\left(4\sin\theta\right)^2 \sqrt{16 - \left(4\sin\theta\right)^2}} d\theta$ $= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{4\cos\theta}{16\sin^2\theta \sqrt{16 - 16\sin^2\theta}} d\theta$	Changes the limits 1
(continues on next page)	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii) (continued) $= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{4\cos\theta}{16\sin^{2}\theta \times 4\sqrt{1-\sin^{2}\theta}} d\theta$ $= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{4\cos\theta}{16\sin^{2}\theta \times 4\sqrt{\cos^{2}\theta}} d\theta$ $= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{4\cos\theta}{16\sin^{2}\theta \times 4\sqrt{\cos^{2}\theta}} d\theta$ $= \frac{1}{16} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{\sin^{2}\theta} d\theta$ $= \frac{1}{16} \left[-\cot\theta \right] \frac{\frac{\pi}{3}}{\frac{\pi}{6}} (using part (i))$ $= -\frac{1}{16} \left[\frac{1}{\tan\theta} \right] \frac{\frac{\pi}{3}}{\frac{\pi}{6}}$ $= -\frac{1}{16} \left(\frac{1}{\tan\frac{\pi}{3}} - \frac{1}{\tan\frac{\pi}{6}} \right)$ $= -\frac{1}{16} \left(\frac{1}{\sqrt{3}} - \sqrt{3} \right)$	
$=-\frac{1}{16}\left(\frac{\sqrt{3}}{3}-\frac{3\sqrt{3}}{3}\right)$	
$=\frac{2\sqrt{3}}{48}$ $=\frac{\sqrt{3}}{24}$	
<i>Note: Consequential on answer to Question 12(b)(i).</i>	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c) (i)	$f(x) = 2x \sin^{-1} x$ $f(-x) = 2(-x)\sin^{-1}(-x)$ $= -2x \sin^{-1}(-x)$ Since the function is odd, $\sin^{-1}(-x) = -\sin^{-1} x$. $f(-x) = 2x \sin^{-1} x$ = f(x) Therefore, $f(x)$ is an even function.	 ME–F1 Further Work with Functions ME–T1 Inverse Trigonometric Functions ME11–1, 11–3 Bands E2–E3 Provides the correct solution 1
(ii	$y = 2x \sin^{-1} x$ $y = 2x \sin^{-1} x$ $(-1, -\frac{\pi}{2}) \bullet$ $(-1, -2)$ $(-1, -\frac{\pi}{2}) \bullet$ $(-1, -2)$ $(-1, -\frac{\pi}{2}) \bullet$ $(-1, -2)$ $(-1,$	 ME–F1 Further Work with Functions ME–T1 Inverse Trigonometric Functions ME11–1, 11–3 Bands E2–E3 Provides the correct solution 2 Sketches the graph. OR Provides the coordinates of the endpoints

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
	$= E\left(\frac{X}{n}\right)$ $= \frac{E(X)}{n}$ $= \frac{np}{n}$ $= p$ $= 0.03$ $= \sigma\left(\frac{X}{n}\right)$ $= \frac{\sigma(X)}{n}$ $= \frac{\sqrt{npq}}{n}$ $= \frac{\sqrt{250 \times 0.03 \times 0.97}}{250}$ $= 0.0108$	ME–S1 The Binomial Distribution ME12–5 Bands E2–E3 • Finds the mean AND standard deviation
$z = \frac{0}{2}$ $= -4$ ≈ -4 Using $P(Z$ There packet is 0.1	Consequential on answer to Question	ME–S1 The Binomial Distribution ME12–5 Bands E2–E3 • Provides the correct solution 2 • Uses the <i>z</i> -score table

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 13	
(a) (i) u $\dot{\theta}$ $\dot{x} = u\cos\theta$ $\dot{x} = 0, \dot{x} = C_1$ When $t = 0, \dot{x} = u\cos\theta$. $C_1 = u\cos\theta$ $\dot{x} = u\cos\theta$ $x = ut\cos\theta + C_2$ When $t = 0, x = 0$. $C_2 = 0$ $x = ut\cos\theta$ $\dot{y} = -10$ $\dot{y} = -10t + C_3$ When $t = 0, \dot{y} = u\sin\theta$. $C_3 = u\sin\theta$ $\dot{y} = -10t + u\sin\theta$ $y = -5t^2 + ut\sin\theta + C_4$ When $t = 0, y = 147$. $C_4 = 147$ $y = -5t^2 + ut\sin\theta + 147$	 ME-V1 Introduction to Vectors ME12-2 Bands E2-E3 Provides the correct solution

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii)	When $t = T$, $y = 0$. $-5T^2 + uT\sin\theta + 147 = 0$ $uT\sin\theta = 5T^2 - 147$ (1)	ME–V1 Introduction to Vectors ME12–2 Bands E2–E4 • Provides the correct solution 3
	When $t = T$, $v = 4u$. $v = \sqrt{\dot{x}^2 + \dot{y}^2}$ $4u = \sqrt{(u\cos\theta)^2 + (-10T + u\sin\theta)^2}$ $16u^2 = u^2\cos^2\theta + 100T^2 - 20uT\sin\theta$ $+ u^2\sin^2\theta$ $= u^2(\cos^2\theta + \sin^2\theta) + 100T^2$ $- 20uT\sin\theta$ $= u^2 + 100T^2 - 20uT\sin\theta$ (as $\cos^2\theta + \sin^2\theta = 1$) $15u^2 = 100T^2 - 20uT\sin\theta$ (2)	• Obtains the equation $uT \sin \theta = 5T^2 - 147.$ AND • Obtains the equation $15u^2 = 100T^2 - 20uT \sin \theta \dots 2$ • Obtains the equation $uT \sin \theta = 5T^2 - 147.$ OR • Obtains the equation $15u^2 = 100T^2 - 20uT \sin \theta \dots 1$
	Substituting (1) into (2): $15u^2 = 100T^2 - 20(5T^2 - 147)$ $= 100T^2 - 100T^2 + 2940$ = 2940 $u^2 = 196$ u = 14 (as u > 0) Note: Consequential on answer to Question 13(a)(i).	
(iii)	From (2): $15u^{2} = 100T^{2} - 20uT \sin\theta$ Substituting $u = 14$: $15(14)^{2} = 100T^{2} - 20(14)T \sin\theta$ $2940 = 100T^{2} - 280T \sin\theta$ $280T \sin\theta = 100T^{2} - 2940$ $\sin\theta = \frac{100T^{2} - 2940}{280T}$ $= \frac{5T^{2} - 147}{14T}$ Note: Consequential on answer to Question 13(a)(ii).	ME-V1 Introduction to Vectors ME12-2 Bands E2-E3 • Provides the correct solution 2 • Uses the initial velocity from part (a)(ii) AND makes some progress toward the solution 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(iv) Minimum value of T is when $\sin \theta = 0$ $\left(as \ 0 < \theta < \frac{\pi}{2} \right).$ $\frac{5T^2 - 147}{14T} = 0$	ME-T3 Trigonometric Equations ME12-3 Bands E2-E4 • Provides the correct solution 3 • Attempts to solve for
$\frac{14T}{14T} = 0$ $5T^2 - 147 = 0$ $5T^2 = 147$ $T^2 = \frac{147}{5}$	$\sin\theta = 0 \text{ AND } \sin\theta = 12$ • Solves for $\sin\theta = 0.$ OR • Solves for $\sin\theta = 11$
$T = \pm \frac{\sqrt{147}}{\sqrt{5}}$ $= \pm \frac{\sqrt{735}}{5}$	
$T > 0$, therefore, the minimum value is $\frac{\sqrt{735}}{5}$. Maximum value of T is when $\sin \theta = 1$.	
$\frac{5T^2 - 147}{14T} = 1$ $5T^2 - 147 = 14T$	
$5T^{2} - 14T - 147 = 0$ $T = \frac{14 \pm \sqrt{(-14)^{2} - 4(5)(-147)}}{2(5)}$	
$=-\frac{21}{5}, 7$	
T > 0, therefore, the maximum value is 7. $\therefore \frac{\sqrt{735}}{5} < T < 7$	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b) (i)	$y = x \int f(x) dx$ Let $u = x$ and $v = \int f(x) dx$. $\frac{du}{dx} = 1$ $\frac{dv}{dx} = f(x)$ Using the product rule gives: $\frac{dy}{dx} = xf(x) + \int f(x) dx$ Multiplying by x gives: $x \frac{dy}{dx} = x^2 f(x) + x \int f(x) dx$ $x \frac{dy}{dx} = x^2 f(x) + y$ $x \frac{dy}{dx} - y = x^2 f(x)$	ME-C3 Applications of Calculus ME12-4 Bands E3-E4 • Provides the correct solution 2 • Attempts to use the product rule OR equivalent merit
(ii)	$x \frac{dy}{dx} - y = x^{5}$ $x^{2}f(x) = x^{5} \text{ (using part (b)(i))}$ $f(x) = x^{3}$ $y = x \int f(x) dx$ $= x \int x^{3} dx$ $= x \times \frac{x^{4}}{4} + c$ $= \frac{x^{5}}{4} + c$ When $x = 2$ and $y = 5$: $5 = \frac{2^{5}}{4} + c$ $c = -3$ $\therefore y = \frac{x^{5}}{4} - 3$ Note: Consequential on answer to Question I3(b)(i).	ME-C3 Applications of Calculus ME12-4 Bands E3-E4 • Provides the correct solution 2 • Finds $f(x)$ using part (b)(i) OR equivalent merit

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 14	
(a)	To find the y-intercept, let $x = 0$. $y = \sqrt{m - 3(0)}$ $= \sqrt{m}$	ME-C3 Applications of Calculus ME12-4 Bands E2-E4 • Provides the correct solution 4
	Rearranging to make <i>x</i> the subject gives: $y = \sqrt{m - 3x}$	• Finds the integrand for the volume of solid of revolution3
	$y^{2} = m - 3x$ $3x = m - y^{2}$ $x = \frac{1}{3}(m - y^{2})$	 Finds the <i>y</i>-intercept. AND Rearranges the equation to make <i>x</i> the subject
	$x = \frac{1}{3}(m - y^{2})$ volume $= \pi \int_{0}^{\sqrt{m}} \left(\frac{1}{3}(m - y^{2})\right)^{2} dy$ $= \frac{\pi}{9} \int_{0}^{\sqrt{m}} (m - y^{2})^{2} dy$ $= \frac{\pi}{9} \int_{0}^{\sqrt{m}} m^{2} - 2my^{2} + y^{4} dy$ $= \frac{\pi}{9} \left[m^{2}y - \frac{2my^{3}}{3} + \frac{y^{5}}{5}\right]_{0}^{\sqrt{m}}$ $= \frac{\pi}{9} \left(m^{2} \times \sqrt{m} - \frac{2m \times (\sqrt{m})^{3}}{3} + \frac{(\sqrt{m})^{5}}{5} - (0 - 0 + 0)\right)$ $= \frac{\pi}{9} \left(m^{2}\sqrt{m} - \frac{2}{3}m^{2}\sqrt{m} + \frac{1}{5}m^{2}\sqrt{m}\right)$ $= \frac{\pi}{9} \times \frac{8}{15}m^{2}\sqrt{m}$ $= \frac{8\pi}{135}m^{2}\sqrt{m}$ $\frac{8\pi}{135}m^{2}\sqrt{m} = \frac{5000\pi}{27}$ $m^{2}\sqrt{m} = 3125$	 to make <i>x</i> the subject
	$m^{\frac{5}{2}} = 3125$ $m = (3125)^{\frac{2}{5}}$ $= 25$	

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	(i)	For an inverse function to exist, the function needs to be monotonically increasing or decreasing. Solving $f'(x) = 0$ to find the minimum turning point gives: $f(x) = x - 4x^{\frac{1}{2}} - 1$ $f'(x) = 1 - 2x^{-\frac{1}{2}}$ $= 1 - \frac{2}{\sqrt{x}}$ $1 - \frac{2}{\sqrt{x}} = 0$ $\sqrt{x} - 2 = 0$ $\sqrt{x} = 2$ $x = 4$ $\therefore k = 4$	 ME-F1 Further Work with Functions ME11-1 Bands E3-E4 Provides the correct solution 2 Attempts to find the minimum turning point OR equivalent merit
	(ii)	$f(x) = x - 4\sqrt{x} - 1, x \ge 4$ For $f^{-1}(x)$: $x = y - 4\sqrt{y} - 1, y \ge 4$ Completing the square (in terms of \sqrt{y}) gives: $x = (y - 4\sqrt{y} + 4) - 4 - 1$ $= (\sqrt{y} - 2)^2 - 5$ $(\sqrt{y} - 2)^2 = x + 5$ $\sqrt{y} - 2 = \pm\sqrt{x} + 5$ $\sqrt{y} = 2 \pm \sqrt{x} + 5$ $y = (2 \pm \sqrt{x} + 5)^2$ Since $y \ge 4$: $\therefore f^{-1}(x) = (2 + \sqrt{x} + 5)^2$ Note: Consequential on answer to Question 14(b)(i).	ME-F1 Further Work with Functions ME11-1 Bands E3-E4 • Provides the correct solution 2 • Attempts to complete the square OR equivalent merit 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(iii)	For the minimum point on $f(x)$: $f(4) = 4 - 4\sqrt{4} - 1$ = -5 For $f(x)$: $D: x \ge 4$ and $R: y \ge -5$ For $f^{-1}(x)$: $D: x \ge -5$ and $R: y \ge 4$ <i>Note: Consequential on answer to Question</i> 14(b)(i).	ME-F1 Further Work with Functions ME11-1Bands E2-E3Provides the correct solution 2Finds coordinates of the minimum turning point.ORFinds the domain and range of $f(x)$
(c) (i)	$(x + \tan\theta)(x - \cot\theta) = 0$ $x^{2} - (\cot\theta)x + (\tan\theta)x - (\tan\theta)(\cot\theta) = 0$ $x^{2} - (\cot\theta - \tan\theta)x - (\tan\theta)\left(\frac{1}{\tan\theta}\right) = 0$ $x^{2} - \left(\frac{\cos\theta}{\sin\theta} - \frac{\sin\theta}{\cos\theta}\right)x - 1 = 0$ $x^{2} - \left(\frac{\cos^{2}\theta - \sin^{2}\theta}{\sin\theta\cos\theta}\right)x - 1 = 0$ $x^{2} - 2\left(\frac{\cos^{2}\theta - \sin^{2}\theta}{2\sin\theta\cos\theta}\right)x - 1 = 0$ Using the double angle formulae gives: $x^{2} - 2\left(\frac{\cos^{2}\theta - \sin^{2}\theta}{\sin^{2}\theta}\right)x - 1 = 0$ $x^{2} - 2\left(\frac{\cos^{2}\theta - \sin^{2}\theta}{2\sin\theta\cos\theta}\right)x - 1 = 0$ $x^{2} - 2\left(\frac{\cos^{2}\theta - \sin^{2}\theta}{\sin^{2}\theta}\right)x - 1 = 0$ $x^{2} - 2\left(\frac{\cos^{2}\theta - \sin^{2}\theta}{\sin^{2}\theta}\right)x - 1 = 0$	 ME–F2 Polynomials ME–T2 Further Trigonometric Identities ME11–1, 11–2 Bands E2–E3 Provides the correct solution 2 Expands (x + tanθ)(x - cotθ) AND makes some progress toward the solution

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii)	$x = -\tan\theta$ and $x = \cot\theta$ are roots of $x^2 - 2(\cot 2\theta)x - 1 = 0$	ME–F2 Polynomials ME–T2 Further Trigonometric Identities ME11–1, 11–2, 11–7 Bands E3–E4
	Substitute $\theta = \frac{\pi}{8}$.	• Provides the correct solution 2
	So, $x = -\tan\left(\frac{\pi}{8}\right)$ and $x = \cot\left(\frac{\pi}{8}\right)$ are roots of: $x^2 - 2\left(\cot\left(\frac{\pi}{4}\right)\right)x - 1 = 0$	• Substitutes $\theta = \frac{\pi}{8}$ into the equation and makes some progress
	$x^2 - 2x - 1 = 0 \left(\operatorname{as } \operatorname{cot} \left(\frac{\pi}{4} \right) = 1 \right)$	Some progress tritter tritter tritter
	$x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-1)}}{2}$	
	$=\frac{2\pm\sqrt{8}}{2}$ $=\frac{2\pm2\sqrt{2}}{2}$	
	$=1\pm\sqrt{2}$	
	$\therefore -\tan\left(\frac{\pi}{8}\right) = 1 - \sqrt{2} \left(as - \tan\left(\frac{\pi}{8}\right) < 0\right)$	
	and $\cot\left(\frac{\pi}{8}\right) = 1 + \sqrt{2}$	
	$\therefore \tan\left(\frac{\pi}{8}\right) = \sqrt{2} - 1$	
(iii)	Substitute $\theta = \frac{\pi}{16}$. So, $x = -\tan\left(\frac{\pi}{16}\right)$ and $x = \cot\left(\frac{\pi}{16}\right)$ are roots of:	 ME–F2 Polynomials ME–T2 Further Trigonometric Identities ME11–1, 11–2, 11–7 Bands E3–E4 Provides the correct solution using part (c)(ii)1
	$x^2 - 2\left(\cot\left(\frac{\pi}{8}\right)\right)x - 1 = 0$	
	Sum of roots: $(-\pi)$	
	$-\tan\left(\frac{\pi}{16}\right) + \cot\left(\frac{\pi}{16}\right) = \frac{2\left(\cot\frac{\pi}{8}\right)}{1}$	
	$\cot\left(\frac{\pi}{16}\right) - \tan\left(\frac{\pi}{16}\right) = 2\left(1 + \sqrt{2}\right)$	
	(from part (c)(ii))	
	Note: Consequential on answer to Question 14(c)(ii).	