Student Number

2022

Trial Examination

Mathematics Standard 2

General Reading time – 10 minutes **Instructions** Working time – 2 hours and

Working time – 2 hours and 30 minutes

Write using black pen

NESA approved calculators may be used

A reference sheet is provided at the back of this paper

For questions in section II, show relevant mathematical reasoning

and/or calculations

Total Marks: 100

Section I – 15 marks (pages 3 – 9)

Attempt all Questions 1 – 15

Allow about 25 minutes for this section

Section II – 85 marks (pages 11 – 34)

Attempt All Questions 16 - 41

Allow about 2 hours and 5 minutes for this section

HHHS

This page intentionally blank

Section I

15 marks Attempt Questions 1 – 15 Allow about 25 minutes for this section

Use the multiple-choice answer sheet for Question 1 – 15.

- **1.** The ratio of fiction to non-fiction books in a library is 4:7. If there are 484 fiction books, how many books are non-fiction?
 - **A.** 176
 - **B.** 308
 - **C.** 847
 - **D.** 1047
- **2.** The stem-and-leaf plot shows the number of goals scored by a team in each of 10 netball games. Find the standard deviation for this data set, correct to the nearest whole number?

- **A.** 9
- **B.** 18
- **C.** 19
- **D.** 29

3. The diagram shows a network. What is the sum of the degrees of all the vertices in this network?

- **A.** 5
- **B.** 10
- **C.** 11
- **D.** 12
- **4.** For the scatterplot is shown,

Which of the following best describes the correlation?

- **A.** Perfect Positive
- B. Weak Positive
- **C.** Strong Negative
- D. Weak Negative

5. What is the correct expression for x in triangle ABC?

$$A. \qquad x = \frac{29\sin 79^\circ}{\sin 61^\circ}$$

$$\mathbf{B.} \qquad x = \frac{21\sin 40^{\circ}}{\sin 61^{\circ}}$$

C.
$$x = \frac{29 \sin 61^{\circ}}{\sin 79^{\circ}}$$

D.
$$x = \frac{21\sin 40^{\circ}}{\sin 79^{\circ}}$$

- **6.** A country has 30% of the population between the ages of 20 and 30. How many people aged between 20 and 30 should be included in a sample of 250 people?
 - **A.** 30
 - **B.** 45
 - **C.** 60
 - **D.** 75

7. What is the perimeter of the shape MNOQ, correct to the nearest metre?

- **A.** 100
- **B.** 108
- **C.** 120
- **D.** 128
- **8.** The normal distribution shows the results of a Mathematics Standard assessment task. It has a mean of 60 and a standard deviation of 10.

What percentage of results lies in the shaded region?

- **A.** 16%
- **B.** 32%
- **C.** 34%
- **D.** 68%

9. Grace invested \$32 000 at a simple interest rate of 7% pa. Calculate the future value of Grace's investment after 5 years.

- **A.** \$11 200
- **B.** \$22 400
- **C.** \$43 200
- **D.** \$44 882

10. Which graph best represents the function $y = \frac{1}{x}$.

A.

B.

C.

D.

11. The compass bearing of *Y* from *X* is $N32^{\circ}W$.

What is the compass bearing of *X* from *Y*?

Not to scale

- **A.** N32°W
- **B.** N58°E
- **C.** S32°E
- **D.** S58°W

12. A piece of artwork is currently valued at \$14 500. It is estimated that the artwork will appreciate at an annual rate of 2.5% over the next 4 years.

Which of these calculations would give the estimated value of the artwork in 4 years' time?

- **A.** $14\,500 \div 1.025 \times 3$
- **B.** $14500 \times 1.0.25 \times 3$
- **C.** $14\,500 \div 1.025^4$
- **D.** $14\,500 \times 1.025^4$
- **13.** The fuel consumption for a car is 7.6 liters/100 km. On a road trip, the car travels a distance of 1860 km. If the cost of fuel is \$1.85/litre, calculate the total fuel cost for this trip?
 - **A.** \$26.15
 - **B.** \$45.28
 - **C.** \$261.52
 - **D.** \$452.76
- **14.** Last month Lenny bought 220 shares at a market price of \$1.35 per share. The market price is now \$1.37 per share. Lenny received a dividend of 8.5 cents per share. What is the dividend yield correct to 1 decimal place?
 - **A.** 6.2 %
 - **B.** 6.3 %
 - **C.** 62.0 %
 - **D.** 62.9 %

15. Calculate the volume of a hemisphere with a radius of 5 m. Answer correct to one decimal place.

- **A.** 261.8 m^3
- **B.** 523.6 m³
- **C.** 785.4 m³
- **D.** 1048 m^3

End of Section I

HHHS

This page intentionally blank

Stud	lent	Nur	nber
Juu	ULIL	IIUI	11001

2022 Trial HSC Examination

Mathematics Standard 2

Section II Answer Booklet

85 marks
Attempt Questions 16 – 41
Allow about 2 hour and 5 minutes for this section

Instructions

- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Your responses should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the back of the booklet. If you use this space, clearly indicate which question you are answering.

Question 16 (2 marks)

Solve
$$x + \frac{10 + x}{3} = 18$$

2

Question 17 (2 marks)

The network diagram shows the walking path between buildings in a school. The average time (in minutes) to walk between buildings is shown on the edges of the diagram.

2

Determine which route has the shortest average time to walk from building B to F. Justify your answer with calculations.

Question 18 (2 marks)	Marks
A plane takes 12 hours to fly from Adelaide (UTC +9.5) to Cape Town in South Africa (UTC +2). If Shaunna leaves Adelaide at 10:00 am, what is the local time when she arrives in Cape Town?	2
Question 19 (3 marks)	
Fran's credit card has a no interest-free period. Interest is charged at 0.039% compounding per day. Interest is charged on the date of purchase but not the date the account is paid. In June, Fran made only one purchase on the 7 th of June, a pair of shoes for \$125. Fran paid the account on the 1 st of July. Calculate the total interest charged for June.	3

Question 20 (2 marks)

Marks

The diagram shows a can of Yummy soup and its label.

2

Calculate the radius of the can, correct to 1 decimal place.

Question 21 (3 marks)

After completing a numeracy test (%), Hanna had achieved a z-score of -2.

(a)	How does Hanna's result compare with those of her peers? Explain your answer in terms of the mean and standard deviation.	1
(b)	If the mean test mark was 86 and the standard deviation was 4, calculate Hanna's actual mark.	2

Ques	tion 22 (4 marks)	Marks
	volume (V litres) of water in a tank as it is being drained over time (t) minutes can odelled by the equation $V=360-12t$.	
(a)	At what rate is the tank draining?	1
(b)	What is the initial volume of the tank?	1
(c)	After how many minutes will the tank have half the initial volume of water?	2

Question 23 (2 marks)

The table shows the average energy used in kilojoules per kilogram of body mass, when cycling at two different speeds for 30 minutes.

2

Cycle Speed	Average energy used (kJ/kg) in 30 minutes		
15 km/h	11.52		
20 km/h	18.43		

Shane weighs 62 kg. If 1 calorie is equivalent to 4.184 kilojoules, approximately how

many more calories would Shane use, cycling at 20 km/h, than he would during the 30 minutes? Answer correct to the nearest whole number.	ŕ

Question 24 (2 marks)

2

The floor of a swimming pool inclines at $2^{\circ}17'$ to the horizontal. The shallow end is 1.3 m deep and the pool is 25 m long. What is the depth d m, to the nearest 0.1 m, at the deep end?

Question 25 (2 marks)

A ball is thrown in the air. Its height h metres, after t second can be given by the formula $h=20t-5t^2$. The graph of the function is shown below.

(a)	What is the height of the ball 3 seconds after it is thrown in the air?	1
(b)	What limitations are there on this model?	1

Question 26 (2 marks)

2

A teacher set up seven activity stations in the school hall. The table shows the distances (in metres) between the seven activity stations.

	A	В	С	D	Е	F	G
Α	-	6	-	ı	-	ı	4
В	6	-	9	4	9	8	7
С	-	9	-	6	-	-	-
D	-	4	6	-	7		-
Е	-	9	-	7	-	2	-
F	-	8	-		2	-	3
G	4	7	-	-	-	3	

Using the data from the table, draw a weighted network diagram in the space below.

Question 27 (2 marks)

Jemma is a political advisor who studies the effects of time on television over a month on the approval rating of six politicians. The data is shown below.

Time (in minutes)	20	10	70	15	5	80
Approval rating (%)	25	50	55	30	80	85

(a)	Using a calculator, find Pearson's correlation coefficient r . Answer correct to four decimal places.	1
(b)	Jemma concludes that a new politician should appear on television as often as possible to gain a high approval rating. Do you agree? Give a reason.	1

Question 28 (4 marks)

Anna sells bracelets for \$15 each at a market. Each bracelet cost her \$6.25 to make and she pays a one-off fee of \$70 to sell these at the market.

Write an equation to describe the relationship between income (I) and the number of bracelets (n) .						
Write an equation to describe the relationship between costs (\mathcal{C}) and the number of bracelets (n).	1					
How many bubble makers must Anna sell to break-even?	2					
	number of bracelets (<i>n</i>). Write an equation to describe the relationship between costs (<i>C</i>) and the number of bracelets (<i>n</i>).					

Question 29 (3 marks)

Adam makes an initial deposit of \$5000 on an investment taken out over one year at a rate of 7.2% per annum compounded quarterly, and an additional deposit of \$200 is made each quarter.

The amount in the account immediately after the nth deposit can be determined using the recurrence relation

$$A_{n+1} = A_n(1+r) + 200$$

Where n=1,2,3,... and $A_0=5000$ A_{n+1} is the value of the loan after (n+1) repayments A_n is the value of the loan after n repayments r is the rate of interest.

(a)	Find the value of r correct to two significant figures.	1
(b)	Use the recurrence relation to find the amount of money in the account immediately after the second deposit.	2

3

Question 30 (3 marks)

The table shows the income tax rates for the 2020-2021 financial year.

Taxable income	Tax payable on this income
0 - \$18 200	Nil
\$18 201 – \$45 000	19 cents for each \$1 over \$18 200
\$45 001 - \$120 000	\$5092 plus 32.5 cents for each \$1 over \$45 000
\$120 001 - \$180 000	\$29 467 plus 37 cents for each \$1 over \$120 000
\$180 001 and over	\$51 667 plus 45 cents for each \$1 over \$180 000

Wendy has a gross annual salary of \$94 000. She has allowable tax deductions of \$1900 for home-office equipment and \$470 for union fees. Wendy must also pay a Medicare Levy of 2% of her taxable income. Calculate the total tax payable by Wendy including the Medicare Levy.

Question 31 (5 marks)

Two school classes performed an experiment to determine the correct volume of a chemical solution. Their results, in milliliters, were presented in the parallel box-plot below.

(a)	What percentage of the results found by Class A were below 28 mL?	1
(b)	Find the Range and Interquartile range for the results found by each class.	2
(c)	One student claimed that there was no difference between the results of the classes. Is the student's comment reasonable if based on the data? Using the box plots, compare and contrast the data to justify your response.	2

Question 32 (3 marks)

The network diagram below shows pipes providing water from a dam to six farms. These pipes connect the farms to each other and to the dam. The lengths of the pipes (in km) are shown.

A plumber is hired to check the water pipes.

(a)	Draw a minimum spanning tree for the network diagram.	2

(b) The system of pipes is due for replacement. What is the minimum length of pipe required to service all of the farms?

Question 33 (4 marks)

Andrew purchased a car for \$55 950.

(a) The table shows the stamp duty rates for a motor vehicle in the state where Andrew lives and purchased the car.

Vehicle value	Rate
0-\$4999	Nil
\$5000-\$44999	\$3 for every \$100 (or part thereof)
\$45 000 and over	\$1300 plus \$6 for every \$100 (or part thereof)

	Using the table, calculate the stamp duty payable on the car.	
(b)	The car has an expected depreciation rate of 18% per annum. What is the salvage value of the car after 5 years?	2

Question 34 (4 marks)

Young's rule is used to calculate the required dosage of medicine for children aged $1\ {\rm to}\ 12\ {\rm years}.$

$$D = \frac{yA}{y + 12}$$

Where:

D =Child dosage in milligrams

y =Age of child in years

A = Adult dosage in milligrams

(a)	What is the required dose for an 18-month-old child, if the adult dose is 72 mg?	2
(b)	The recommended dose for a 3-year-old child is 5 mg. What is the adult dosage using Young's rule?	2

Question 35 (5 marks)

Olivia and Henry play a game of darts. Olivia has a 0.8 chance of hitting the number 12 and Henry has a 0.6 chance of hitting the number 12. They each throw a single dart at the board, both aiming at the number 12.

(a) Complete the probability tree diagram.

2

(b) Find the probability that they both hit the number 12.

1

(c) Find the probability that exactly one of the darts hits the number 12.

2

2

2

Question 36 (4 marks)

The diagram below shows the aerial view of a roof for a farm shed.

(a) Using two applications of the Trapezoidal rule, find the approximate area of the roof.

.....

(b) Any rain that falls on to the roof flows directly into a rainwater tank. Assuming there is no runoff, calculate how many litres of water is collected in the rainwater tank when 120 mm of rain falls onto the roof.

 $1 \text{ m}^3 = 1 \text{ kL}$

1

2

1

Question 37 (4 marks)

The number of cases of infection of a certain disease grows exponentially according to the function $c = 150(1.09)^d$, where c is the number of cases and d is the time in days.

Number of days (d)	0	4	8	12	16	20
Number of cases (c)	150	212	299	422	596	

(a) How many cases are there after 20 days? Answer correct to the nearest whole number?

(b) On the grid below, draw the graph that represents the relationship between d and c.

(c) Using the graph drawn, estimate the time taken, in days, for the number of cases to reach 800. Give your answer correct to the nearest whole number.

2

Question 38 (4 marks)

The table below shows the future value of a \$1 annuity.

Future value of \$1									
Period 1% 2% 3% 4% 5% 6%									
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000			
2	2.0100	2.0200	2.0300	2.0400	2.0500	2.0600			
3	3.0301	3.0604	3.0909	3.1216	3.1525	3.1836			
4	4.0604	4.1216	4.1836	4.2465	4.3101	4.3746			

(a)	An annuity of \$14 800 is invested every half-year at 6% per annum, compounded six-monthly for 2 years. What is the future value of the annuity?
(b)	Sonia aims to have a deposit for an apartment of at least \$180 000 in 3 yearstime by investing in an annuity. The annuity has an interest rate of 2% p.a. compounded annually. Calculate Sonia's yearly contribution to achieve the deposit. Answer to the nearest dollar.

Question 39 (5 marks)

The price of various second-hand Mazda cars are shown below.

Age (a)	1	2	0	5	7	4	3	4	8
Value (<i>v</i>)(\$)	15000	11000	18900	9800	7500	11600	10500	11000	3500

(a)	Find the equation of the least-square regression line in terms of Age (a) and Value (v) of the car.	1
(b)	What is the value of the <i>y</i> -intercept for this equation, and what does it represent in the context of the data?	2
(c)	When would the value of the car be \$0? Answer correct to the nearest year.	2

Question 40 (6 marks)

The diagram below shows the plan for a triangular park ABC. Fence posts have been located at points A, B and C. AB is 50 m and BC is 80 m. The bearing of B from A is 040° and the bearing of C from B is 125° .

(a)	What is the size of angle θ ?	1
a >		
(b)	What is the true bearing of point A from point B?	1
(c)	Find the area of the park? Answer correct to one decimal place.	2

Question 40 continues on page 33

	Question 40 continued.	Marks
(d)	Find the length of AC? Answer correct to one decimal place.	2

Question 41 (3 marks)

At a school carnival, the final heights jumped by year 12 competitors were found to be normally distributed with a mean of 5.54 metres and a standard deviation of 3 metres.

3

The standard normal distribution table is shown. The values in the table represent the area under the normal curve to the left of the *z*-score.

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55966	0.56360	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71126	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214

Using standardised scores and the standard normal distribution table, find the

probability that a randomly chosen competitor achieves height between 5.99 and 6.59 metres. Give your answer correct to three decimal places.

End of Paper

Section II Extra writing space

If you use this space, clearly indicate which question you are answering.

Section II Extra writing space

If you use this space, clearly indicate which question you are answering.

D O

Student Number

Section I – Multiple Choice Answer Sheet

Allow about 25 minutes for this section

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		A ()	R 🛑	$C \cap$	D O

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

CO В A If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows. correct

Hunters Hill High School – Standard 2 – 2021 Trial HSC Examination

Marking Guidelines

Section I

Q		outcome
1	484	MS2-12-10
	$\frac{484}{4} \times 7 = 847$	
	С	1400 40 0
2	9	MS2-12-2
3	A	MC2 12 0
3	12 D	MS2-12-8
4	Weak Positive	MS2-12-7
7	B	WI3Z-1Z-7
5	29 sin 61°	MS2-12-4
	$x = \frac{1}{\sin 79^{\circ}}$	1102 12 1
	С	
6	$0.3 \times 250 = 75$	MS2-12-2
	D	
7	$\sqrt{20^2 + 20^2} + (20 \times 4) = 108$	MS2-12-4
	В	
8	100% - 68% = 32%	MS2-12-7
	В	
9	$32000 \times 0.07 \times 5 + 32000 = 43200	MS2-12-5
10	C	MS2-12-6
10	Hyperbola C	M32-12-0
11	S32°E	MS2-12-4
	C C	17102 12 1
12	14500×1.025^4	MS2-12-5
	D	
13	$1860 \div 100 \times 7.6 \times 1.85 = 261.52$	MS2-12-3
	С	
14	$\frac{0.085}{1.37} \times 100 = 6.2\%$	MS2-12- 5
1 "	A 1	MC2 12 4
15	$\frac{4}{3} \times \pi \times 5^3 \times \frac{1}{2} = 261.8 \mathrm{m}^3$	MS2-12- 4
	A A	
	<u></u>	

Section II

16	$x + \frac{10 + x}{3} = 18$	MS2-12-1
	3x + 10 + x = 54	2 marks: provides correct
	x = 11	answer showing
		appropriate mathematical
		working for solving
		equations.
		1 mark : correctly creates a
		common fraction
17	The shortest path is B– G- A – F	MS2-12-8
	$3+1+3=7 \min$	
	The shortest average walk time is 7 minutes.	2 marks: Correct answer
		with working.
		1 mark: Finds the shortest
		path or shows some understanding.
18	The time difference between the cities is $9.5 - 2 = 7.5$	MS2-12-3
	hours.	1432 12 3
	Adelaide is ahead of Cape town.	2 marks : Correct answer
	Go back 7.5 hours from 10:00 am then add 12 hours	with working.
	flying time.	1 mark : Find correct time
		difference
	10 am - 7.5 hour + 12 hours = 2:30 pm.	
	It is 2:30 pm on the same day	
19	7th June to 30th June is 24 days.	MS2-12-5
	$FV = PV(1+r)^n$	3 marks : Correct answer
	$= 125(1 + 0.00039)^{24}$	with working.
	= 126.17526	2 marks : Correct answer
	≈ \$126.18	for FV.
		1 mark: Finds the number
		of days or uses the
	I = FV - PV	compound interest
	= 126.18 - 125	formula.
	= \$1.18	
	Interest charged is \$1.18	
20	$C = 2 \times \pi \times r$	MS2-12-4
	$2 \times \pi \times r = 23.6$	2 manta. Camaat
	= 3.7560	2 marks: Correct answer
	=3.8 cm	with working. 1 mark: Shows
		understanding by using
		the correct formula.
		the correct for finds.

21	а	Hazel's score is 2 standard deviation below the mean.	MS2-12-10
			1 mark: Correct answer
	b	$z = \frac{x - \mu}{1 + \mu}$	MS2-12-7
		$z = \frac{x - \mu}{\sigma}$ $-2 = \frac{x - 86}{4}$	
		$-2 = \frac{x - 86}{4}$	2 marks: Correct answer
		x - 86 = -8	with working.
		x = 78	1 mark : Uses the z-score formula with at least one
		\Hanna's actual mark was 78.	correct value.
		· ·	correct variation
22	а	Gradient is 12 therefore 12 L/min	MS2-12-1
			1 mark: Correct answer
	b	Y-intercept is 360 therefor initial volume is 360 litres. or find V when t=0	MS2-12-1
			1 mark: Correct answer
	С	360 - 12t = 180	MS2-12-1
		12t = 180	2 marks: Correct answer
		t = 15 Therefore in 15 minutes.	with working.
		Therefore in 15 initiates.	1 mark: Shows
			understanding that $V =$
			180
23		$(18.43 - 11.52) \times 62 \div 4.184 = 102.3948 \dots$	MS2-12-3
		≈ 102	2 manufact Commont amorros
			2 marks : Correct answer with working.
			1 mark: Correctly
			calculates kj used to cycle
			at least at one speed or
			shows understanding
24		$\tan 2^{o}17' = \frac{h}{25}$, where <i>h</i> is the height of the	MS2-12-4
		triangular shape.	2 marks: Provides correct
		$h = 25 \times \tan 2^{o}17'$	solution
		= 0.996819	1 mark : Uses the correct
		$d = 1.3 + 0.996819 \dots$ $d \approx 2.3 m$	trigonometric ratio, or
		$u \approx 2.3 \text{m}$ The depth is 2.3 m	equivalent merit
		The depuir is 2.5 iii	
25	a	h = 15 m	MS2-12-6
	u		1100 10 0
			1 mark: Correct answer

	b	If $t < 0$ or $t > 4$ the value of h becomes negative which	MS2-12-10
		is not possible given the ball cannot go below ground level.	1 mark: Correct answer
26			MS2-12-8
		B 9 C 4 6 4 7 8 9 D 7 8 7	2 marks: Draws the weighted network diagram correctly with all vertices and edges labelled correctly 1 mark: Draws the weighted network diagram with some error
27	a	Using the calculator	MS2-12-7
		$r = 0.40991611$ ≈ 0.4099	1 mark: Correct answer
	b	Disagree.	MS2-12-10
		Pearson's correlation of 0.4099 indicates a weak positive correlation between time and television. In addition, Jack's investigation uses a small data sample.	1 mark: Correct answer
28	a	Let the income for producing x bubble makers be $\$I$ $I = 15n$	MS2-12-6
			1 mark: Correct answer
	b	Let the costs for producing n bubble makers be $C = 6.25n + 70$	MS2-12-6
		C = 6.2511 + 70	1 mark: Correct answer
	С	Break-even point (income equals costs) $15n = 6.25n + 70$ $8.75n = 70$ $n = \frac{70}{8.75}$ $= 8$	MS2-12-6 2 marks: Correct answer with working 1 mark: Equates income to costs.
		\Ava needs to sell 8 bracelets to make a profit.	
29	a	$r = 0.072 \div 4$ = 0.018	MS2-12-5
			1 mark: correct answer, accept 1.8%

	b	5000(1 + 0.018) + 200 = 5290	MS2-12-5
		5290(1 + 0.018) + 200 = 5585.22	
		Therefore \$5585.22	2 marks: Correct answer
			with working
			1 mark: Correct answer
			after first deposit.
30		Taxable income = $94\ 000 - 1900 - 470$	MS2-12-5
		= 91 630	
		Income Tax = $5092 + 0.325 \times (91630 - 45000)$	3 marks : Correct answer
		= 20246.75	with working
		Medicare Levy = 0.02×91630	2 marks: Correctly
		= 1832.60	calculate taxable income
		Total Tax Payable = $20246.75 + 1832.60$	and income tax with
		= 22079.35	working
		2207 7.00	1 mark : Only calculates
			taxable income or
			equivalent merit
31	a	Below Q3 therefore 75%	MS2-12-10
	a	Below Q5 therefore 7570	1452 12 10
	b	Class A	MS2-12-2
		$IQR = Q_3 - Q_1$	
		= 28.0 - 23.5	2 marks : Correct answers
		= 4.5	with working
		Range = $28.5 - 22.5$	1 mark: shows some
		= 6	understanding
		Class B	
		$IQR = Q_3 - Q_1$	
		= 27.0 - 25	
		= 2	
		Range = $28.0 - 24.5$	
		= 3.5	
	С	The medians are equal and therefore it is reasonable for	MS2-12-10
		the student to assert that there appears to be no	
		difference in the volume results obtained from both	2 marks : Correct answer.
		classes.	
		(and/or)	1 mark: Shows some
		However, the results of Class A indicate a larger	understanding.
		1	
		interquartile range and range. This indicates the results	
		of class A are less consistent than class B.	

32	a	Minimum spanning tree	MS2-12-8
		C 4 D 5 Dam	2 marks: Correct answer. 1 mark: Shows some understanding.
	b	Length = $4 + 5 + 3 + 4 + 3 + 1$	MS2-12-8
		= 20 km	1 mark: Correct answer.
33	a	To calculate stamp duty, the purchase price must be rounded up to the nearest \$100. Purchase price $55950 = \$56000$ $1300 + 6 \times 56000 \div 100 = 4660$ Therefore, stamp duty is \$4660	MS2-12-5 2 marks: Correct solution with working 1 mark: Makes some progress with ONE error
	b	$S = Vo(1-r)^n$ = 55 950(1 - 0.18) ⁵ = 20 742.89423 $\approx $20 742.89$	MS2-12-5 2 marks: Correct solution with working 1 mark: Shows substitution into the declining-balance formula
34	a	$D = \frac{1.5 \times 72}{1.5 + 12}$ $= 8$ Therefore 8 mg	with ONE error MS2-12-1 2 marks: Correct answer with working 1 mark: Uses formula correctly with one error in substitution
	b	$\frac{3 \times A}{3 + 12} = 5$ $\frac{3A}{15} = 5$ $3A = 75$ $A = 25$	MS2-12-1 2 marks: Correct answer with working 1 mark: Uses formula correctly with one error

35	а	Olivia Henry	MS2-12-2
		0.6 Hit	
		Hit	2 marks: Correct answer
		0.8 Miss	1 mark: Correct miss for
		0.6 Hit	Olivia or miss for Henry or
		0.2 Miss	one error
		0.4 Miss	
		MISS	
	b	$P(HH) = 0.8 \times 0.6$	MS2-12-2
		= 0.48	
			1 mark: Correct answer.
	С	$P(HM) + P(MH) = (0.8 \times 0.4) + (0.2 \times 0.6)$ $= 0.44$	MS2-12-2
			2 marks: Correct answer
			with working
			1 mark: Shows some
			understanding one
			combination
36	а	$V \approx \left[\frac{20}{2} (30 + 40) + \frac{20}{2} (40 + 42) \right]$	MS2-12-4
		$= 1520 \text{ m}^2$	2 marks: Correct answer
			with working
			1 mark: Shows some
			understanding using the
			correct formula.
	b	Capacity = $1520 \times 0.12 \times 1000$	MS2-12-3
		$= 182 \ 400 \ L$	
			2 marks Correct answer
			with working
			1 mark: Shows some
			understanding
37	a	When $d = 20$	MS2-12-6
		$c = 150(1.09)^{20}$	
		= 840.6616	1 mark: Correct solution
		≈ 841 cases	with working

39	а	A = 16747.2	MS2-12-7
		B = -1527.2	
		v = 16747.2 - 1527.2a	1 mark: Correct answer
		10/1/12 102/12	2 marin gorroot answer
	b	<i>y</i> -intercept is 16747.20 (or 18900 from table)	MS2-12-7
	_	The value of a new Mazda	
			2 marks: Correct answer
			1 mark: stating y intercept
	С	16747.2 - 1527.2a = 0	MS2-12-7
		$a = \frac{16747.20}{1527.20} = 10.9659 \dots$	2 marks: Correct answer
		= 11 years	1 mark : Substituting $v = 0$
		, and the second	in equation
			m equation
40	a	$\theta = 360 - (180 - 40) - 125$	MS2-12-3
	-	= 95°	
			1 mark: Correct answer.
	b	Bearing = 125° + 95°	MS2-12-3
	-		
		= 220°	1 mark: Correct answer.
		Bearing of A from B is 220°.	
	С	$A = \frac{1}{2}ab\sin C$	MS2-12-4
		A = 2 absinc	
		$= \frac{1}{2} \times 50 \times 80 \times \sin 95^{\circ}$	2 marks: Correct answer
		= 1992.389	with working.
		$\approx 1992.4 \text{ m}^2$	1 mark : Uses the area of a
		\Area of the garden is 1992.4 m ² .	triangle formula with one
		(An out of the guitant is 1992).	correct value.
	d	$a^2 = b^2 + c^2 - 2bc\cos A$	MS2-12-4
		$AC^2 = 50^2 + 80^2 - 2 \times 50 \times 80 \times \cos 95^\circ$	
		AC = 97.6553	2 marks: Correct answer
		≈ 97.7 m	with working
		\Length of AC is 97.7 m.	1 mark: Uses the cosine
		, 5	rule with 1 correct value.
41		$x - \mu$	MS2-12-7
		$z = \frac{x - \mu}{\sigma}$	102 12 /
		For $x = 5.99$	3 marks: Correct solution
		5.99 — 5.54	with working
		$z = \frac{5.99 - 5.54}{3}$	2 marks : Shows evidence
		= 0.15	
			(recognising z-scores)
		For $x = 6.59$	AND subtraction of
			probabilities from the

$$z = \frac{6.59 - 5.54}{3}$$
$$= 0.35$$

$$P(0.15 < z < 0.35) = P(z < 0.35) - P(z < 0.15)$$

$$= 0.63683 - 0.55966$$

$$= 0.07717$$

$$\approx 0.077$$

table with some error

1 mark: Shows evidence
(recognising z-scores)

AND makes some progress