\qquad

Mathematics Extension 1

General • Working time - 120 minutes
Instructions • Write using black pen
- NESA approved calculators may be used
- A reference sheet is provided at the back of this paper
- In section II, show relevant mathematical reasoning and/or calculations

Total marks:

Section I-10 marks
70

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - $\mathbf{6 0}$ marks

- Attempt all questions
- Allow about 1 hour and 45 minutes for this section

Section I

10 marks

Attempt questions 1-10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for questions 1-10

1. Given $f(x)=\sqrt{x}-3$, what are the domain and range of $f^{-1}(x)$?
(A) $x \geq-3, y \geq 0$
(B) $x \geq-3, \quad y \geq-3$
(C) $\quad x \geq 0, y \geq 0$
(D) $x \geq 0, y \geq-3$
2. What is the value of $\sin 2 x$ given that $\sin x=0.8$ and x is obtuse ?
(A) $-\frac{12}{25}$
(B) $-\frac{24}{25}$
(C) $\frac{12}{25}$
(D) $\frac{24}{25}$
3. Jack starts at the origin and walks along vector $2 \underset{\sim}{l}+3 \underset{\sim}{J}$ and then turns and walks along vector $\underset{\sim}{4} \imath-2 \jmath$. How far is Jack from the origin?
(A) 5
(B) $\sqrt{11}$
(C) $\sqrt{37}$
(D) $\sqrt{61}$
4. What is the derivative of $f(x)=\tan ^{-1} \frac{1}{x}$?
(A) $\frac{-1}{1+x^{2}}$
(B) $\frac{-x^{2}}{1+x^{2}}$
(C) $\frac{1}{1+x^{2}}$
(D) $\frac{x^{2}}{1+x^{2}}$
5. Layla projects an arrow at an angle of 45° to the horizontal with an initial velocity of $50 \mathrm{~ms}^{-1}$. What is the horizontal speed of the arrow?
(A) $\sqrt{2} \mathrm{~ms}^{-1}$
(B) $50 \sqrt{2} \mathrm{~ms}^{-1}$
(C) $\frac{1}{\sqrt{2}} \mathrm{~ms}^{-1}$
(D) $\frac{50}{\sqrt{2}} \mathrm{~ms}^{-1}$
6. A school committee consists of 8 members and a chairperson. The members are selected from 12 students. The chairperson is selected from 4 teachers. In how many ways could the committee be selected?
(A) ${ }^{12} C_{8}+{ }^{4} C_{1}$
(B) ${ }^{12} P_{8}+{ }^{4} P_{1}$
(C) ${ }^{12} P_{8} \times{ }^{4} P_{1}$
(D) ${ }^{12} C_{8} \times{ }^{4} C_{1}$
7. $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-12 y=0$

What are the values of p for which $y=e^{p x}$ satisfies the above differential equation?
(A) $p=-4, p=3$
(B) $p=-3, p=4$
(C) $p= \pm 3$
(D) $p= \pm 4$
8. What is the correct expression for the indefinite integral $\int\left(4 \cos ^{2} x+\sec ^{2} x\right) d x$?
(A) $2 x+2 \sin 2 x+\tan x+C$
(B) $2 x-2 \sin 2 x+\tan x+C$
(C) $2 x+\sin 2 x+\tan x+C$
(D) $2 x-\sin 2 x+\tan x+C$
9. The graph of $y=x^{2}-4 \mathrm{~s}$ shown below.

Not to scale

The area of the region A is the equal to the area of the region B. What is the value of a ?
(A) 6
(B) $\sqrt{6}$
(C) $2 \sqrt{3}$
(D) 12
10. Harry knows that each ticket has a probability of 0.15 of winning a prize in a lucky ticket competition. He buys 30 tickets. What is a general rule for the probability distribution of the number of winning tickets?
(A) $\quad P(X=x)={ }^{15} C_{x} 0.30^{x} 0.70^{15-x}$
(B) $\quad P(X=x)={ }^{15} C_{x} 0.30^{x} 0.70^{15-x}$
(C) $P(X=x)={ }^{30} C_{x} 0.15^{x} 0.85^{30-x}$
(D) $P(X=x)={ }^{30} C_{x} 0.85^{x} 0.15^{30-x}$

Section II

60 marks

Attempt all questions

Allow about 1 hour and 45 minutes for this section

Answer each question in the spaces provided.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Marks

2

 having five possible answers. A student guesses the answer to every question. Let X be the number of correct answers. What is $E(X)$?(b) A curve with the equation $y=-x^{3}+x^{2}+8 x+10$ has a maximum turning point at A. The shaded region shown below, is bounded by the curve, the y-axis and the line from O to A, where O is the origin.

Not to scale
(i) Show that the x-coordinate of A is 2 .

1
(ii) Find the area of the region.
(c) Find the exact value of $\int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} d x$.
(d) (i) Find the remainder when $x^{3}-2 x^{2}-4 x+8$ is divided by $x-2$.
(ii) Hence or otherwise find all the solutions to the equation:

$$
x^{3}-2 x^{2}-4 x+8=0
$$

(e) $\triangle D E C$ has a right angle at D.

Show that:
(i) $|\underset{\sim}{d}|^{2}=\underset{\sim}{e} \cdot \underset{\sim}{e}+2(\underset{\sim}{e} \cdot \underset{\sim}{c})+\underset{\sim}{c} \cdot \underset{\sim}{c} \quad \mathbf{2}$
(ii) $|d|^{2}=|e|^{2}+|c|^{2} \quad \mathbf{2}$
(a) Find the exact value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin ^{2} x d x$.

3

2
(b) Solve $\frac{d y}{d x}=e^{3 y}$ by finding x as a function of y.
(c) A missile is shot from the origin O with initial speed of $64 \mathrm{~ms}^{-1}$ at an angle of 30° to the horizontal. The equations of motion are $\ddot{x}=0$ and $\ddot{y}=-10$.
(i) Show that $x=32 \sqrt{3} t$.

1
(ii) Show that $y=32 t-5 t^{2}$. 2
(iii) What is the equation of the trajectory of the missile?
(d) A multiple-choice test contains ten questions. Each question has four choices for the correct answer. Only one of the choices is correct. A student guesses the answers to all the questions.
(i) What is the probability of getting all the questions correct?
(ii) What is the probability of getting at most 90% ? 1
(iii) What is the probability of getting over 75% ?2
(e) Find the angle between the vectors $\underset{\sim}{a}=-2 \underset{\sim}{l}+6 \underset{\sim}{\sim}$ and $\underset{\sim}{b}=4 \underset{\sim}{l}-2 \underset{\sim}{\jmath}$.
(a) Given that $y=e^{2 x}+e^{-2 x}$, determine the values of constants a and b that satisfy the following equation:

$$
\frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+b y=5 e^{2 x}+e^{-2 x}
$$

(b)

A semi-circle with centre (1,0) and radius 2 , lies on the x-axis as shown above. Find the volume of the solid of revolution formed when the shaded region is rotated completely about the x-axis.
(c) Using the substitution $u=4-x$ or otherwise, find $\int 3 x \sqrt{4-x} d x$.
(d) Prove by mathematical induction that:
$n^{3}+2 n$ is divisible by 3 for all positive integers $n(n \geq 1)$.
(e) Use the binomial theorem to expand $\left(\frac{1}{2} x-3\right)^{4}$. Simplify your answer.
(a) Use the principle of mathematical induction to prove that:
$1+4+16+\ldots+4^{n}=\frac{1}{3}\left[4^{n+1}-1\right]$
where n is a positive integer greater than or equal to zero.
(b) (i) Prove the trigonometric identity $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.
(ii) Hence find expressions for the exact values of the solutions to the equation $8 a^{3}-6 a=1$.
(c) A population of platypus has an initial population of 200. Birth rates and the amount of food affect the population of the platypus. The decrease in the population, P, is given by the formula:
$P=\frac{200}{1+500 e^{-1.5 t}}$ where k is a constant and t is in months
How long will it take for only 40 platypus to remain?
Give your answer to the nearest month.
(d) (i) Show that $\frac{\sec ^{2} x}{\tan x}=\frac{\operatorname{cosec} x}{\cos x}$
(ii) Use the substitution $u=\tan x$ to find the exact value of the integral:

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\operatorname{cosec} x}{\cos x} d x
$$

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length
$l=\frac{\theta}{360} \times 2 \pi r$

Area

$A=\frac{\theta}{360} \times \pi r^{2}$
$A=\frac{h}{2}(a+b)$

Surface area

$A=2 \pi r^{2}+2 \pi r h$
$A=4 \pi r^{2}$

Volume

$V=\frac{1}{3} A h$
$V=\frac{4}{3} \pi r^{3}$

Functions

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

For $a x^{3}+b x^{2}+c x+d=0$:

$$
\begin{aligned}
\alpha+\beta+\gamma & =-\frac{b}{a} \\
\alpha \beta+\alpha \gamma+\beta \gamma & =\frac{c}{a} \\
\text { and } \alpha \beta \gamma & =-\frac{d}{a}
\end{aligned}
$$

Relations

$(x-h)^{2}+(y-k)^{2}=r^{2}$

Financial Mathematics

$A=P(1+r)^{n}$

Sequences and series
$T_{n}=a+(n-1) d$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{n}{2}(a+l)$
$T_{n}=a r^{n-1}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{a\left(r^{n}-1\right)}{r-1}, r \neq 1$
$S=\frac{a}{1-r},|r|<1$

Logarithmic and Exponential Functions

$\log _{a} a^{x}=x=a^{\log _{a} x}$
$\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$

$$
a^{x}=e^{x \ln a}
$$

Trigonometric Functions

$\sin A=\frac{\text { opp }}{\text { hyp }}, \quad \cos A=\frac{\text { adj }}{\text { hyp }}, \quad \tan A=\frac{\text { opp }}{\text { adj }}$
$A=\frac{1}{2} a b \sin C$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$l=r \theta$
$A=\frac{1}{2} r^{2} \theta$

Trigonometric identities
$\sec A=\frac{1}{\cos A}, \cos A \neq 0$
$\operatorname{cosec} A=\frac{1}{\sin A}, \sin A \neq 0$
$\cot A=\frac{\cos A}{\sin A}, \sin A \neq 0$
$\cos ^{2} x+\sin ^{2} x=1$

Compound angles

$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
If $t=\tan \frac{A}{2}$ then $\sin A=\frac{2 t}{1+t^{2}}$

$$
\cos A=\frac{1-t^{2}}{1+t^{2}}
$$

$$
\tan A=\frac{2 t}{1-t^{2}}
$$

$\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$
$\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
$\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$
$\cos A \sin B=\frac{1}{2}[\sin (A+B)-\sin (A-B)]$
$\sin ^{2} n x=\frac{1}{2}(1-\cos 2 n x)$
$\cos ^{2} n x=\frac{1}{2}(1+\cos 2 n x)$

Statistical Analysis

$z=\frac{x-\mu}{\sigma}$

An outlier is a score
less than $Q_{1}-1.5 \times I Q R$ or
more than $Q_{3}+1.5 \times I Q R$

Normal distribution

- approximately 68% of scores have z-scores between -1 and 1
- approximately 95% of scores have z-scores between -2 and 2
- approximately 99.7% of scores have z-scores between -3 and 3
$E(X)=\mu$
$\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left(X^{2}\right)-\mu^{2}$

Probability

$$
\begin{aligned}
& P(A \cap B)=P(A) P(B) \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}, P(B) \neq 0
\end{aligned}
$$

Continuous random variables

$$
\begin{aligned}
& P(X \leq x)=\int_{a}^{x} f(x) d x \\
& P(a<X<b)=\int_{a}^{b} f(x) d x
\end{aligned}
$$

Binomial distribution

$P(X=r)={ }^{n} C_{r} p^{r}(1-p)^{n-r}$
$X \sim \operatorname{Bin}(n, p)$
$\Rightarrow P(X=x)$

$$
=\binom{n}{x} p^{x}(1-p)^{n-x}, x=0,1, \ldots, n
$$

$E(X)=n p$
$\operatorname{Var}(X)=n p(1-p)$

Differential Calculus

Function

$y=f(x)^{n}$
$\frac{d y}{d x}=n f^{\prime}(x)[f(x)]^{n-1}$
$y=u v$
$\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
$y=g(u)$ where $u=f(x) \quad \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
$y=\frac{u}{v}$
$\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
$y=\sin f(x) \quad \frac{d y}{d x}=f^{\prime}(x) \cos f(x)$
$y=\cos f(x)$
$y=\tan f(x) \quad \frac{d y}{d x}=f^{\prime}(x) \sec ^{2} f(x)$
$y=e^{f(x)}$
$y=\ln f(x)$
$y=a^{f(x)}$
$y=\log _{a} f(x)$
$y=\sin ^{-1} f(x)$
$\frac{d y}{d x}=f^{\prime}(x) e^{f(x)}$
$\frac{d y}{d x}=\frac{f^{\prime}(x)}{f(x)}$
$\frac{d y}{d x}=(\ln a) f^{\prime}(x) a^{f(x)}$
$\frac{d y}{d x}=\frac{f^{\prime}(x)}{(\ln a) f(x)}$
$y=\cos ^{-1} f(x)$
$y=\tan ^{-1} f(x)$

Derivative

$\int f^{\prime}(x)[f(x)]^{n} d x=\frac{1}{n+1}[f(x)]^{n+1}+c$ where $n \neq-1$
$\int f^{\prime}(x) \sin f(x) d x=-\cos f(x)+c$
$\int f^{\prime}(x) \cos f(x) d x=\sin f(x)+c$
$\int f^{\prime}(x) \sec ^{2} f(x) d x=\tan f(x)+c$
$\int f^{\prime}(x) e^{f(x)} d x=e^{f(x)}+c$
$\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+c$
$\int f^{\prime}(x) a^{f(x)} d x=\frac{a^{f(x)}}{\ln a}+c$
$\int \frac{f^{\prime}(x)}{\sqrt{a^{2}-[f(x)]^{2}}} d x=\sin ^{-1} \frac{f(x)}{a}+c$
$\int \frac{f^{\prime}(x)}{a^{2}+[f(x)]^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{f(x)}{a}+c$
$\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x$
$\int_{a}^{b} f(x) d x$
$\approx \frac{b-a}{2 n}\left\{f(a)+f(b)+2\left[f\left(x_{1}\right)+\cdots+f\left(x_{n-1}\right)\right]\right\}$
where $a=x_{0}$ and $b=x_{n}$

Combinatorics

${ }^{n} P_{r}=\frac{n!}{(n-r)!}$
$\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$
$(x+a)^{n}=x^{n}+\binom{n}{1} x^{n-1} a+\cdots+\binom{n}{r} x^{n-r} a^{r}+\cdots+a^{n}$

Vectors

$|\underset{\sim}{u}|=|x \underset{\sim}{i}+y \underset{\sim}{j}|=\sqrt{x^{2}+y^{2}}$
$\underset{\sim}{u} \cdot \underset{\sim}{v}=|\underset{\sim}{u}||\underset{\sim}{v}| \cos \theta=x_{1} x_{2}+y_{1} y_{2}$,
where $\underset{\sim}{u}=x_{1} \underset{\sim}{i}+y_{1} \underset{\sim}{j}$
and $\underset{\sim}{v}=x_{2} \underset{\sim}{i}+y_{2} \underset{\sim}{j}$
$\underset{\sim}{r}=\underset{\sim}{a}+\lambda \underset{\sim}{b}$

Complex Numbers

$$
\begin{aligned}
& \begin{aligned}
z=a+i b & =r(\cos \theta \\
& +i \sin \theta) \\
& =r e^{i \theta}
\end{aligned} \\
& \begin{aligned}
{[r(\cos \theta+i \sin \theta)]^{n} } & =r^{n}(\cos n \theta+i \sin n \theta) \\
& =r^{n} e^{i n \theta}
\end{aligned}
\end{aligned}
$$

Mechanics

$\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$
$x=a \cos (n t+\alpha)+c$
$x=a \sin (n t+\alpha)+c$
$\ddot{x}=-n^{2}(x-c)$

