Mathematics Extension 1- Solutions

1 Let $P(x)=x^{3}-2 a x^{2}+x-1$ where $a \in \mathbb{R}$. When $P(x)$ is divided by $x+2$, the remainder is 5 . What is the value of a ?
A. 2
B. $-\frac{7}{4}$
C. $\frac{1}{2}$
D. -2

$P(x)$	$=x^{3}-2 a x^{2}+x-1$
$P(-2)$	$=(-2)^{3}-2 a(-2)^{2}+(-2)-1$
	$=-8-8 a-2-1$
	$=-8 a-11=5$
$-8 a=16$	
$\therefore a=-2$	

2 The points A and B have coordinates $(-2,3)$ and $(2,-5)$ respectively.
Which of the following is the vector $\overrightarrow{A B}$?
A. $-2 \underset{\sim}{j}$
(B.) $4 \underset{\sim}{i}-8 \underset{\sim}{j}$

D. $2 j$

3 What is the angle between the vectors $\binom{-7}{1}$ and $\binom{1}{-1}$?
A. $\cos ^{-1}(-0.8)$
B. $\cos ^{-1}(-0.08)$
C. $\cos ^{-1}(0.8)$
D. $\cos ^{-1}(0.08)$

4 Which of the following is the derivative of $\tan ^{-1}(3 x)$?
A. $3 \tan ^{-1} 3 x$
B. $\frac{3}{1+9 x^{2}}$
C. $\frac{3}{1+3 x^{2}}$

D. $3 \sec ^{2} 3 x$

5 What is the equation of the inverse of $f(x)=\frac{5+e^{2 x}}{3}$?
A. $y=\frac{3}{5+e^{2 x}}$
B. $y=e^{5-3 x}$
(C. $y=\frac{1}{2} \ln (3 x-5)$
D. $y=\frac{1}{2} \ln (5-3 x)$

6 Four female and four male students are to be seated around a circular table. In how many ways can this be done if the males and females must alternate?
A. $4!\times 4$!
B. $3!\times 4$!
C. $3!\times 3$!
D. $2 \times 3!\times 3$!

7 The graph below shows $y=\frac{1}{f(x)}$.

Which of the following best represents the equation of $f(x)$?
A. $f(x)=1-x^{2}$
B. $f(x)=x\left(x^{2}-1\right)$

$$
\begin{aligned}
y & =-x(x-1)(x+1) \\
& =x\left(1-x^{2}\right)
\end{aligned}
$$

C. $f(x)=x\left(1-x^{2}\right)$
D. $f(x)=x^{2}\left(x^{2}-1\right)$
$8 \quad$ What is the vector projection of $\underset{\sim}{a}=2 \underset{\sim}{i}+3 \underset{\sim}{j}$ in the direction of $\underset{\sim}{b}=\underset{\sim}{i}-4 \underset{\sim}{j}$?
A. $-\frac{20}{17} \underset{\sim}{i}-\frac{30}{17} \underset{\sim}{j}$
B. $-\frac{10}{13} \underset{\sim}{i}+\frac{40}{13} \underset{\sim}{j}$
C. $\quad-\frac{20}{13} \underset{\sim}{i}-\frac{30}{13} \underset{\sim}{j}$
(D. $-\frac{10}{17} \underset{\sim}{i}+\frac{40}{17} \underset{\sim}{j}$

9 The radius of a sphere, r, is increasing at the rate of 0.3 cm per second. What is the rate of increase in the volume, V, in $^{\mathrm{cm}^{3}}$ per second, at the instant when the surface area is $100 \pi \mathrm{~cm}^{2}$?
A. 10π
B. 12π
C. 25π
(D.) 30π

$d v=d v \times d r$	$S A=4 \pi r^{2}$
$\overline{d t} \overline{d r} d t$	$=100 \pi$
Now $v=\frac{4}{3} \pi r^{3}$	
$\frac{d v}{d r}=4 \pi r^{2}$	
$d V=100 \pi \times 0.3$	
$d t=30 \pi$	

10 Which of the following is the range of the function $f(x)=\left|b \cos ^{-1}(x)-a\right|$, where $a>0, b>0$ and $a<\frac{b \pi}{2}$?
A. $[-a, b \pi-a]$
B. $[0, b \pi-a]$
C. $[a, b \pi-a]$
D. $[0, a]$

$f(x)=\left\|b \cos ^{-1}(x)-a\right\|$
$0 \leq \cos ^{-1}(x) \leq \pi$
$0 \leq b \cos ^{-1}(x) \leq b \pi$
$-a \leq b \cos ^{-1}(x)-a \leq b \pi-a$
$0 \leq\left\|b \cos ^{-1}(x)-a\right\| \leq b \pi-a$
$a<\frac{b \pi}{2}$
$\quad 2 a<b \pi$
$b \pi-a>a>0$

Question 11 (15 marks)
(a) Solve $|2 x-3| \leq 1$. $\quad \mathbf{2}$
$-1 \leqslant 2 x-3 \leqslant 1$
$2 \leqslant 2 x \leqslant 4$
$1 \leqslant x \leqslant 2$
(b) Find $\int_{0}^{\frac{1}{2}} \frac{d y}{\sqrt{1-3 y^{2}}}$.
$\int_{0}^{1 / 2} \frac{d y}{\sqrt{1-3 y^{2}}}=\frac{1}{\sqrt{3}} \int_{0}^{1 / 2} \frac{\sqrt{3} d y}{\sqrt{1-(\sqrt{3 y})^{2}}}$

$=\pi$
$3 \sqrt{3}$
(c) Let α, β and γ be the roots of the equation $2 x^{3}-k x^{2}-4 x+12=0$.
(i) Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
(ii) Given that two of its roots sum to zero, find the third root and hence find the value of k.
(i) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma}$
$=$

\qquad

i) Let the roots be $\alpha,-\infty, \beta$ \qquad

$\frac{1}{\beta}=\frac{1}{3}$
$\beta=3$
$\begin{aligned} & i+\alpha-\alpha+\frac{k}{2} \\ & 3=\frac{k}{2}\end{aligned} \quad$ (sum of roots)
$k=6$.
(d) Using the substitution $t=\tan \frac{\theta}{2}$, or otherwise, show that

$$
\cot \theta+\frac{1}{2} \tan \frac{\theta}{2}=\frac{1}{2} \cot \frac{\theta}{2} \text { for all } \theta \neq k \pi, k \in \mathbb{Z} .
$$

LAS $=\cot \theta+\frac{1}{2} \tan \frac{\theta}{2}$

$=\frac{1-t^{2}+t^{2}}{2 t}$
$=\frac{1}{2 t}$
$=\frac{1}{2} \times \frac{1}{t}$
\qquad
$=$ RHO
(e) Find the term independent of x in the expansion of $\left(3 x^{2}+\frac{2}{x}\right)^{12}$.

For term independent of $x: 24-3 k=0$
\qquad

$=10264320$.
(f) Prove by mathematical induction that $n^{3}+2 n$ is divisible by 3 for all positive integers $n .3$

- Test for $n=1$
$1^{3}+2(1)=3$ which is divisible by 3
\therefore The statement is the for $n=1$
- Assume the statement is true for $n=k$
i.e. $k^{3}+2 k=3 p$ for integer P
- Prove far $n=k+1$
ie. $(k+1)^{3}+2(k+1)=3 Q \quad Q \in \mathbb{Z}$

$$
\begin{aligned}
L_{H S} & =(k+1)^{3}+2(k+1) \\
& =\left(k^{3}+3 k^{2}+3 k+1+2 k\right)+2 \\
& =\left(k^{3}+2 k\right)+3\left(k^{2}+k+1\right) \\
& =3 p+3\left(k^{2}+k+1\right) \quad \text { from assumption } \\
& =3\left(P+k^{2}+k+1\right) \\
& =3 Q \quad Q=P+k^{2}+k+1 \in \mathbb{Z}
\end{aligned}
$$

\therefore The statement is true for $n=k+1$, if it is True for $n=k$.

- By mathematical induction, it is true for all positive integers.

Question 12 (15 marks)
(a) Solve $\frac{x^{2}+6}{x}<5$.
a) $\frac{x^{2}+6}{\alpha}<5$

$$
\left(x x^{2}\right) \quad x\left(x^{2}+6\right)<5 x^{2}
$$

$$
x\left(x^{2}+6\right)-5 x^{2}<0
$$

$$
a\left(x^{2}-5 x+6\right)<0
$$

$$
a(x-3)(x-2)<0
$$

$$
x<0,2<x<3
$$

(b) By expressing $\cos x-\sqrt{3} \sin x$ in the form $A \cos (x+\alpha)$ where $A>0$, solve $\cos x-\sqrt{3} \sin x+1=0$ for $0 \leq x \leq 2 \pi$.

$$
\begin{aligned}
\cos x-\sqrt{3} \sin x & =A \cos (x+x) \\
& =A \cos x \cos x-A \sin x \sin \alpha
\end{aligned}
$$

Equating coefficients:

$$
\begin{align*}
& A \cos \alpha=1 \tag{1}\\
& A \sin \alpha=\sqrt{3} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
(1)^{2} \cdot(2)^{2}: A^{2} \cos ^{2} \alpha+A^{2} \sin ^{2} \alpha & =1+3 \\
A^{2} & =4 \\
A & =2 \quad(A>0) \\
(2):(1) \quad \frac{\sin \alpha}{A \cos \alpha} & =\sqrt{3} \\
\tan \alpha & =\sqrt{3} \\
\alpha & =\pi / 3 \\
\therefore \cos x-\sqrt{3} \sin x & =2 \cos \left(x+\frac{\pi}{3}\right)
\end{aligned}
$$

$$
\cos \left(x+\frac{\pi}{3}\right)=-\frac{1}{2}
$$

$$
\begin{aligned}
& 0 \leqslant x \leqslant 2 \pi \\
& \frac{\pi}{3} \leqslant x+\frac{\pi}{3} \leqslant \frac{2 \pi}{3}
\end{aligned}
$$

$$
x+\frac{\pi}{3}=\pi-\frac{\pi}{3}, \pi+\frac{\pi}{3}
$$

$$
x=\frac{\pi}{2}, \pi
$$

(c) A section of the graph of $y=\sqrt{\sin 3 x \cos 2 x}$ is shown in the diagram below.

By first finding the smallest positive solution to $\sin 3 x \cos 2 x=0$, find the volume of the solid formed when the shaded region is rotated about the x-axis.

```
sin}3x\operatorname{cos}2x=
```


$=\frac{\pi}{2}\left(\left(\frac{1}{5 \sqrt{2}}-\frac{1}{\sqrt{2}}\right)-\left(-\frac{1}{5}-1\right)\right)$

(d) In the diagram below $A P B$ is a triangle. N is a point on $A P$.

$$
\overrightarrow{A B}=\underset{\sim}{a}
$$

$$
\overrightarrow{A N}=2 \underset{\sim}{b}
$$

$$
\overrightarrow{N P}=\underset{\sim}{b}
$$

(i) Find the vector $\overrightarrow{P B}$ in terms of $\underset{\sim}{a}$ and $\underset{\sim}{b}$.
(ii) $\quad B$ is the midpoint of $A C . M$ is the midpoint of $P B$.

Show that $N M C$ is a straight line.

Question 13 (15 marks)
(a) A netball team's record for the 2022 season was 16 wins and 4 losses.

None of their games were drawn. Prove that the team must have won at least 4 games in a row somewhere during the season.

There ore s spots to place the wins between the
4 losses in the season
$L \longrightarrow L \square$
\therefore There ore 5 categories to place the 16 objects (wins).
\qquad
There must be at least 4 wins in one of the categories.
By the pigeonhole prindpal the team must have
won 4 games in a row somewhen during the season.
(b) The letters of the word REORDER are arranged randomly in a line.
(i) Use a combinatorial argument to explain why
$\binom{7}{3}\binom{4}{2}\binom{2}{1}\binom{1}{1}=\binom{7}{1}\binom{6}{1}\binom{5}{2}\binom{3}{3}$.
(ii) Hence, or otherwise, find the probability that a random rearrangement has all the consonants grouped together.
$R R R$
$\in E$ 7 letters

0
\qquad

- To make on arrangement of these letters:
choose 3 spots for the R's in $\binom{7}{3}$ ways
_then choose 2 spots for the E's from the remaining 4 spots

then choose the spot for the 0 from the remaining 2 spots in $\binom{2}{1}$ ways and then finally place the D in (1) ways.

$$
\text { total \# of arangements }=\binom{7}{3}\binom{4}{2}\binom{2}{1}\binom{1}{1}
$$

Alternately first place the D in (7) ways then place the O in (6) ways', then place the E^{\prime} in $\binom{5}{2}$ ways
finally place the Rosin $\binom{3}{3}$ ways. and finally place the Rs in $\binom{3}{3}$ ways.
.. total \# of arrangements $\binom{7}{1}\binom{6}{1}\binom{5}{2}\binom{3}{3}$

$$
\therefore\binom{7}{3}\binom{4}{2}\binom{2}{1}\binom{1}{1}=\binom{7}{1}\binom{6}{1}\binom{5}{2}\binom{3}{3}
$$

ii) Arrangements with consonants grouped together:

RRRD OE

4 groups
Arrange groups $\frac{4!}{2!}$ ways and then arrange consonants in $\frac{4!}{3!}$ ways

$$
\begin{aligned}
P(\text { consonants grouped togeth })= & \frac{4!}{2!} \times \frac{4!}{3!} \\
& \binom{7}{3}\binom{4}{2}\binom{2}{1}\binom{1}{1} \leftarrow \text { from }\left(\begin{array}{l}
i
\end{array}\right) \\
= & \frac{4}{35}
\end{aligned}
$$

(c) A pilot is performing at an air show. The position of her aeroplane at time t relative to a fixed origin O is given by $\underset{\sim}{r}(t)=\left(450-150 \sin \left(\frac{\pi t}{6}\right)\right) \underset{\sim}{i}+\left(400-200 \cos \left(\frac{\pi t}{6}\right)\right) \underset{\sim}{\sim}$, where $\underset{\sim}{i}$ is a unit vector in a horizontal direction and $\underset{\sim}{j}$ is a unit vector vertically up. Displacement components are measured in metres and time t is measured in seconds where $t \geq 0$.
(i) Show that the cartesian equation of the path of the aeroplane is given by:

$$
\frac{(x-450)^{2}}{22500}+\frac{(y-400)^{2}}{40000}=1
$$

\qquad

The path of the aeroplane is shown in the diagram below. At the same time that the pilot begins performing, a firework is fired from O with a velocity of 80 metres per second at an angle of inclination of θ. The position of the firework at time t relative to the fixed origin is given by $\underset{\sim}{s}(t)=(80 t \cos \theta) \underset{\sim}{i}+\left(80 t \sin \theta-5 t^{2}\right) \underset{\sim}{j}$.
(Do NOT prove this).

(ii) Find the value of θ given that the firework explodes when it reaches its maximum height of 160 m .
(iii) By first finding a vector that represents the displacement of the aeroplane from the firework at time t, find how far the aeroplane is from the firework when it explodes. Give your answer to the nearest metre.
\qquad

when $t=8 \sin \theta, y=160$ $80(8 \sin \theta) \sin \theta-5(8 \sin \theta)^{2}=160$ $\begin{aligned} 640 \sin ^{2} \theta-320 \sin ^{2} \theta & =160 \\ 32 \sin ^{2} \theta & =160\end{aligned}$

iii) $\overrightarrow{S R}=\overrightarrow{O R}-\overrightarrow{O S}$

$$
=\left[\begin{array}{l}
450-150 \sin \left(\frac{\pi t}{6}\right) \\
4.00-200 \cos \left(\frac{\pi t}{6}\right)
\end{array}\right]-\left[\begin{array}{l}
80 t \cos \theta \\
80 t \sin \theta-5 t^{2}
\end{array}\right]
$$

$$
\begin{aligned}
& Q=\frac{\pi}{4} \Rightarrow \sin \theta=\cos \theta=\frac{1}{\sqrt{2}}, \quad \begin{array}{ll}
t & =8 \sin \theta . \\
& =8 / \sqrt{2}
\end{array} \\
& \begin{array}{ll}
\overrightarrow{S R}=\left[\begin{array}{ll}
450-150 \sin \left(\frac{\pi}{6} \times \frac{8}{\sqrt{2}}\right)-80\left(\frac{8}{\sqrt{2}}\right) \times \frac{1}{\sqrt{2}} \\
400-200 \cos \left(\frac{\pi}{6} \times \frac{8}{\sqrt{2}}\right)-80\left(\frac{8}{\sqrt{2}}\right) \times \frac{1}{\sqrt{2}}+5\left(\frac{8}{\sqrt{2}}\right)^{2}
\end{array}\right]
\end{array}
\end{aligned}
$$

$$
=\left[\begin{array}{l}
450-150 \sin \left(\frac{2 \sqrt{2} \pi}{3}\right)-320 \\
400-200 \cos \left(\frac{2 \sqrt{2} \pi}{3}\right)-320+160
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
130-150 \sin \left(\frac{2 \sqrt{2} \pi}{3}\right) \\
240-200 \cos \left(\frac{2 \sqrt{2} \pi}{3}\right)
\end{array}\right]
$$

$$
|\overrightarrow{S R}|^{2}=\sqrt{\left(130-150 \sin \left(\frac{2 \sqrt{2} \pi}{3}\right)\right)^{2}+\left(240-200 \cos \left(\frac{2 \sqrt{2} \pi}{3}\right)^{2}\right.}
$$

$$
\begin{aligned}
& =\sqrt{201426.25} \\
& =448.8 \mathrm{~m} \\
& =449 \mathrm{~m} \quad \text { (nearest metre) }
\end{aligned}
$$

Question 14 (15 marks)
(a) Use the substitution $x=\sin \theta$ to find $\int_{0}^{\frac{1}{2}} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$. 3

$=\int_{0}^{\pi / c} \frac{\sin ^{2} \theta}{\sqrt{\cos ^{2} \theta}} \cos \theta d \theta$.
$=\int_{0}^{\pi / 6} \frac{\sin ^{2} \theta \operatorname{dos} \theta}{\cos \theta} d \theta \quad \cos \theta>0$
$=\int_{0}^{\pi / 6} \frac{1}{2}(1-\cos 2 \theta) d \theta$.
$=\left[\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]_{0}^{\pi / 6}$
$=\left[\left(\frac{\pi}{12}-\frac{1}{4} \sin \left(\frac{\pi}{3}\right)\right)-(0-0)\right]$
$=\frac{\pi}{12}-\frac{\sqrt{3}}{8}=\frac{2 \pi-3 \sqrt{3}}{24}$
(b) (i) Write $2 \sin x \sin ((2 k+1) x)$ as the difference of two cosine functions. 1
(ii) Prove by mathematical induction that for all integers $n \geq 1$,

$$
\sin x+\sin 3 x+\sin 5 x+\ldots .+\sin (2 n-1) x=\frac{1-\cos 2 n x}{2 \sin x}
$$

$=\cos (-2 k x)-\cos (2(k+1) x)$

$\sin x+\sin 3 x+\sin 5 x+\cdots+\sin (2 n-1) x=1-\cos 2 n x$

$$
2 \sin x
$$

- Test for $n=1$
$L H S=\sin (2(t)-1) x \quad$ Rus $=\frac{1-\cos 2(1) x}{2 \sin x}$
$=\sin x$
$=\frac{1-\cos 2 x}{2 \sin x}$
$2 \sin x$
$=\frac{2 \sin ^{2} x}{2 \sin x}$
$=\sin x$
\therefore True for $n=1$
- Assure tree fur $n=k$
i.e. $\sin x+\sin 3 x+\sin 5 x+\cdots+\sin (2 k-1) x=\frac{1-\cos 2 k x}{2 \sin x}$
- Prove the for $n=k+1$
7.e. $\sin x+\sin 3 x+\sin 5 x+\cdots+\sin (2(k+1)-1) x=\frac{1-\cos 2(k+1) x}{2 \sin x}$
$L H 5=\sin x+\sin 3 x+\sin 5 x+\cdots+\sin (2 k-1) x+\sin (2(k+1)-1) x$

$$
\begin{aligned}
& =\frac{1-\cos 2 k x}{2 \sin x}+\sin (2(k+i)-1) x \\
& =\frac{1-\cos 2 k x+2 \sin x \sin (2 k+1) x}{2 \sin x}
\end{aligned}
$$

$$
=\frac{1-\cos 2 k x+\cos (2 k x)-\cos 2(k+1) x}{2 \sin x} \text { from port i, }
$$

$$
=1-\cos 2(k+1) x
$$

$2 \sin x$
\therefore By mathematical induction it is the for all integers $n \geqslant 1$
(c) (i) The graph of $f(x)=-\frac{1}{x^{2}}$ is shown below. 2

Use addition of ordinates to sketch the graph of $g(x)=x^{2}-\frac{1}{x^{2}}$ for $y \in[-10,10]$ clearly showing the location of the x-intercepts.
You do not need to find the \boldsymbol{x}-coordinates at the endpoints of the range.

(ii) Show that $g(x)$ may be rearranged to give $x^{2}=\frac{y+\sqrt{y^{2}+4}}{2}$.
\qquad
$y=x^{2}-\frac{1}{x^{2}}$

A glass with a hollow stem, and with base at $y=-10$ is made by rotating the part of $g(x)$ where $x>0$ and $y \in[-10,10]$ about the y-axis to form a solid of revolution, where length units are in centimetres.
(iii) Write down a definite integral which, when evaluated, would give the volume of the glass.
(iv) Liquid is poured into the glass at a rate of $1.5 \mathrm{~cm}^{3}$ per second.

Find the rate at which the surface of the liquid is rising when it is 6 cm from the top of the glass.

At $y=4$

