

Ascham School Mathematics Advanced 2021 Trial Examination

General Instructions:

Reading time -10 minutes

Working time – 3 hours

Write using black pen.

Calculators approved by NESA may be used.

A reference sheet is provided.

Section I - 10 marks

Use the SEPARATE Multiple Choice Answer Sheet provided.

Allow about 15 minutes for this section.

Section II - 90 marks

Attempt Questions 11-33

Allow about 2 hours 45 minutes for this section.

For questions in Section II, show relevant mathematical reasoning and/or calculations.

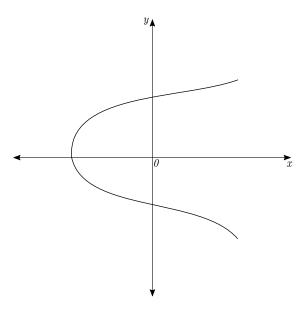
Additional writing space is provided at the end of Section II.

NESA Number: _____ SW MA RC MN SE GS

[Blank Page]

Section I

10 marks


Attempt Questions 1-10.

Allow about 15 minutes for this section.

Use the separate multiple choice answer sheet.

Question 1

What type of relation is shown?

A) one-to-one

B) one-to-many

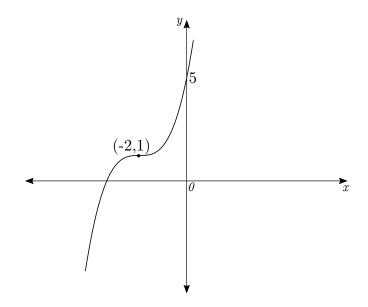
C) many-to-one

D) many-to-many

Question 2

Which interval describes the domain of $y = \frac{1}{\sqrt{x-2}}$?

A) $[2, \infty)$


B) $(2, \infty)$

C) $[-\infty, 2)$

D) $(-\infty, 2]$

Question 3

Which is the correct equation of the following graph?

A)
$$y = (x+2)^3 + 1$$

B)
$$y = \frac{1}{2}(x+2)^3 + 1$$

C)
$$y = (x+2)^3 + 5$$

D)
$$y = \frac{1}{2}(x+2)^3 + 5$$

Question 4

Find $\int x^2 (2x^3 - 1)^4 dx$.

A)
$$\frac{(2x^3-1)^5}{5} + C$$

B)
$$\frac{\left(2x^3-1\right)^5}{30}+C$$

C)
$$\frac{(2x^3-1)^5}{5x^2} + C$$

D)
$$\frac{\left(2x^3-1\right)^5}{30x^2}+C$$

SE

Question 5

Which pair of functions satisfy the condition f(g(x)) = x?

$$f(x) = 3x - 1$$

$$f(x) = 3x - 1$$
A)
$$g(x) = \frac{x+1}{3}$$

$$f(x) = 3x - 1$$

$$f(x) = 3x - 1$$
B)
$$g(x) = \frac{x}{3} + 1$$

$$f(x) = 3x - 1$$

$$f(x) = 3x - 1$$
C)
$$g(x) = x + \frac{1}{3}$$

$$f(x) = 3x - 1$$

$$f(x) = 3x - 1$$
D)
$$g(x) = \frac{1}{3} - x$$

Question 6

For which value of k does the equation $4x^2 + kx + 9 = 0$ have two distinct (unequal) real roots?

A)
$$k = 0$$

B)
$$k = 6$$

C)
$$k = 12$$

D)
$$k = 18$$

Question 7

The cumulative distribution function (CDF) of a continuous random variable is given by $F(x) = \sqrt{x} - 1$ for the interval [1,4].

What is the median?

$$C)$$
 2.5

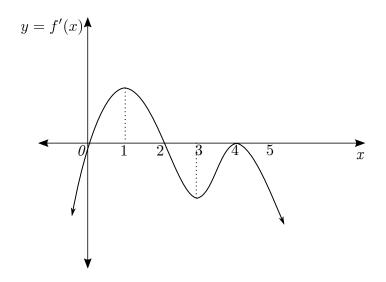
Question 8

Given the following table of $P(Z \le z)$ for the standard normal random variable Z .

	first decimal place									
z	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0.	0.5000	0.5398	0.5793	0.6179	0.6554	0.6915	0.7257	0.7580	0.7881	0.8159
1.	0.8413	0.8643	0.8849	0.9032	0.9192	0.9332	0.9452	0.9554	0.9641	0.9713
2.	0.9772	0.9821	0.9861	0.9893	0.9918	0.9938	0.9953	0.9965	0.9974	0.9981
3.	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

What is the value of $P(Z \ge -1.5)$?

A) 0.0668


B) 0.4332

C) 0.9332

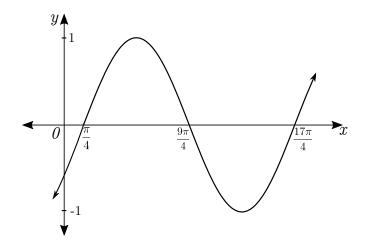
D) Insufficient table

Question 9

The graph of y = f'(x) is shown below.

For which value of x is there a local maximum on the graph of y = f(x)?

 $A) \quad x = 0$


 $B) \quad x = 1$

 $C) \quad x = 2$

 $D) \quad x = 3$

Question 10

Which equation correctly describes the following graph?

A)
$$y = \sin\left(2x - \frac{\pi}{4}\right)$$

$$B) \ y = \sin\left(\frac{1}{2}x - \frac{\pi}{4}\right)$$

C)
$$y = \sin\left(2x - \frac{\pi}{2}\right)$$

$$D) \ y = \sin\left(\frac{1}{2}x - \frac{\pi}{8}\right)$$

End of Section I.

NESA Number: _____ SW MA RC MN SE GS

Blank Page

NESA	Number:					
	SW	MA	RC	MN	SE	GS

Section II

90 marks

Attempt Questions

Allow about 2 hours and 45 minutes for this section.

Answer the questions in the spaces provided. These spaces provide guidance for the expected length of your response.

Your responses should include relevant mathematical reasoning and/or calculations.

If additional space is required, use the additional pages at the end of Section II. Please label them clearly with your NESA number and the question number.

Question 11 (2 marks)	
Solve $ 4x-2 = 14$.	[2]
	· • • • • • •
	. .
Question 12 (2 marks) Differentiate $f(x) = \frac{\tan x}{x}$.	[2]
	• • • • • •

NESA Number:						
				MN	SE	GS
Question 13 (3 marks)						
Evaluate the series $8+11+14++101$.						[3]
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
		• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
		• • • • • • • • • • • • • • • • • • • •				•••••
	••••••	•	•	••••••	•	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••
		• • • • • • • • • • • • • • • • • • • •				
Describes 14 (4 manufact)						
Question 14 (4 marks) a) Differentiate $y = (2x+1)e^x$.						[0]
) Differentiate $y = (2x + 1)e^{-x}$.						[2]
		• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
		•••••				
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
		• • • • • • • • • • • • • • • • • • • •				•••••
b) Hence find an anti-derivative of $f(x) = (6$	$(6x+9)e^x$					[2]
		• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••
		• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
		• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••

Question 15 (3 marks)	
Solve $2\cos^2 x = 1$ for $-\pi \le x \le \pi$.	[3]
	•••••
0 (1 10 (1 1)	
Question 16 (1 mark)	
Simplify $\frac{d}{dx} \int_{1}^{x} \log_{e} t \ dt$.	[1]
$u_{nl} = 1$	
	•••••
Question 17 (2 marks)	
Show that $\frac{\cos^2 x}{\sin x} + \sin x = \csc x$	[2]
	•••••

NESA Number: $_$

SW

MA

RC

MN

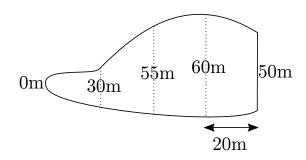
SE

GS

NESA Number:

SW MA RC MN SE GS

Question 18 (4 marks)

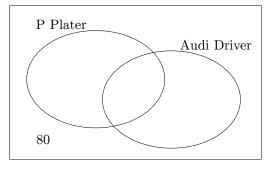

A coin is tossed four times. Let X represent the number of tails.

X	0	1	2	3	4
P(X=x)	$\frac{1}{16}$	$\frac{4}{16}$		$\frac{4}{16}$	$\frac{1}{16}$

	16	16	16	16
a) Find $P(X)$	= 2).			[1]
b) Show that	E(X) = 2.			[1]
c) Find Var(2	X).			[2]
	(2)		 	
Question 19 Find $\int \cos 2x$	(2 marks) $(1 + \sin 2x)^4 dx$	٠.		[2]
			 	•••••

Question 20 (2 marks)

A golf course is partially fenced by a 50 metre wall. A surveyor takes parallel measurements every 20 metres, as shown below.


Use the trapezoidal rule to estimate the area of the golf course.	[2]
	• • • • • • • • • • • • • • • • • • • •

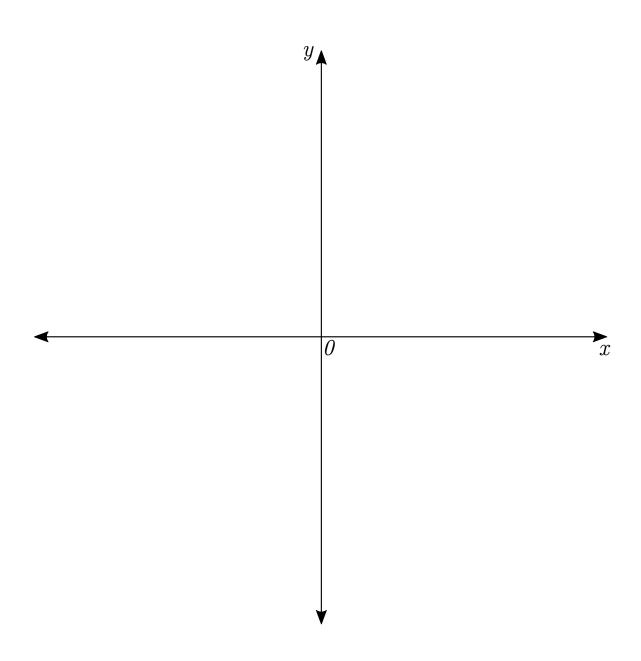
Question 21 (3 marks)

Of 120 drivers that are surveyed, 24 have P plates, 20 drive an Audi, and 80 drivers do neither, as shown in the Venn diagram below.

a) Complete the Venn diagram below.

[2]

b) Show that the events "has P plates" and "drives an Audi" are independent.	

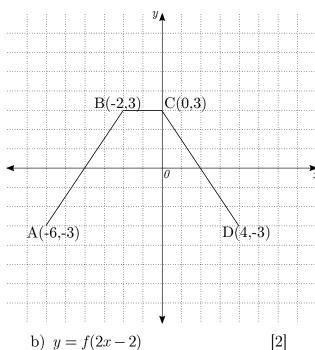

	SW	MA	RC	MN	SE	GS
Question 22 (4 marks) A particle's motion is modelled by the dis x is the displacement in metres from the					$-t^2$ wl	here
a) Find the equation for velocity.						[1]
) When is the posticle stationary?		••••••	•••••	•••••		
b) When is the particle stationary?		••••••	•••••	•••••		[1]
From $t = 0$ to $t = 6$, when is the partic						[2]
						•••••
						•••••
						•••••

NESA Number:

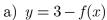
NESA I	Number:					
	SW	MA	RC	MN	SE	GS
Question 23 (8 marks)						
Consider the function $f(x) = 2x^3 + 9x^2 - 4$						
a) Find the coordinates of any stationary po	oints and	l determ	nine the	eir natu	re.	[4]
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
			• • • • • • • • • • • • • • • • • • • •			
			• • • • • • • • • • • • • • • • • • • •			
b) Find any points of inflection.						[2]
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••

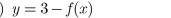
NESA N	$Number:_{\underline{\ }}$					
	SW	MA	RC	MN	SE	GS

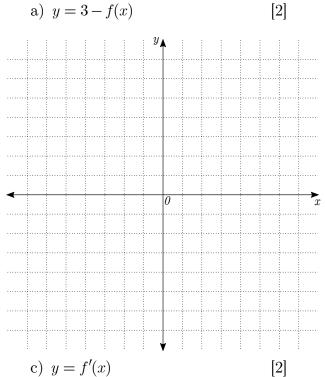
c) Sketch the graph of y = f(x), showing stationary points, points of inflection and the y-intercept. You are not required to label the x-intercepts. [2]

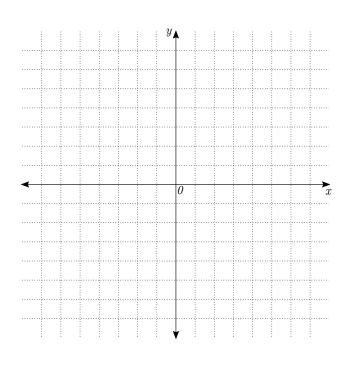

NESA Number: RCGSSWMAMNSE

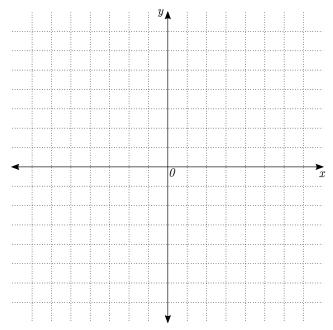
Question 24 (6 marks)

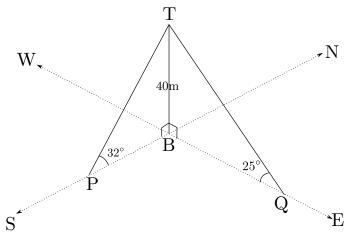

Consider the graph of y = f(x) for $-6 \le x \le 4$ shown below.


Sketch the following, indicating the images A', B', C', and D' where applicable.


$$y = f(x)$$

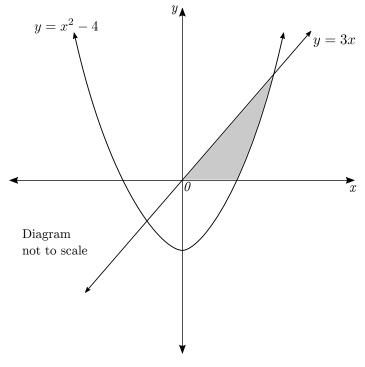



b)
$$y = f(2x - 2)$$



NESA Number: _____ SW MA RC MN SE GS

Question 25 (5 marks)


The top T of a 40 metre tall tree is observed from station P south of the tree with an angle of elevation of 32° , and also observed from station Q east of the tree with an angle of elevation of 25° .

a) Show that the distance from P to the base B of the tree is $40 \cot 32^{\circ}$	[2]
	••••
b) Hence find the distance between the stations P and Q to the nearest metre.	[3]
	••••
	••••
	••••
	••••
	••••
	••••

Question 26 (4 marks)

Find the shaded area.

•••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••	••••••	••••••	•••••	• • • • • • • •	•••••	•••••		• • • • • • • • • • • • • • • • • • • •
															• • • • • • • • • • • • • • • • • • • •
															• • • • • • • • • • • • • • • • • • • •
															• • • • • • • • • • • • • • • • • • • •
															• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••	• • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • •	• • • • • • • •	•••••	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •

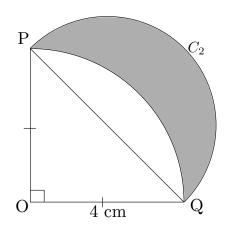
NESA Nu	mber:					
(SW	MA	RC	MN	SE	GS

Question 27 (6 marks)

A new crypto-token called Meowcoin decreases in value after its release based on the formula $P = 1200 + 3000 \left(1.2\right)^{-t}$, where P is its price in dollars and t is time since release in years.

b) Sketch
$$P = 1200 + 3000 (1.2)^{-t}$$
 below. [2]

c) Find the rate of decrease of Meowcoin's price 5 years after its release.	[2]
	•••••
d) What value will Meowcoin eventually reach?	[1]
	••••••


					SW	MA MA	RC	MN	SE (GS
-	ion 28 (,								
	n produce			_	•	distribu	ited with	a mean	of 60	
grams a)	and a sta What pe			_						
ı)	i) between	_		_	11.				[1	1
	1) BOOW 60	311 01.00 8	and 02.	. 9.					[-	-]
• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •				
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••		•••••	•••••	••••••	•••••	•••••	••••
	ii) less th	nan 55.2	g?						[1	1]
	,								ŗ	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••		•••••	•••••	••••••	•••••	•••••	••••
	•••••		•••••							····
• • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••
o)	Consider	the follo	owing tal	ole of $P($	$Z \le z$) for	or a stan	dard nor	mal vari	able Z .	
	first de	cimal pla	ace							
Z	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
).	0.5000	0.5398	0.5793	0.6179	0.6554	0.6915	0.7257	0.7580	0.7881	0.8159
	0.8413	0.8643	0.8849	0.9032	0.9192	0.9332	0.9452	0.9554	0.9641	0.9713
2.	0.9772	0.9821	0.9861	0.9893	0.9918	0.9938	0.9953	0.9965	0.9974	0.9981
3.	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000
	mily that			=		_			_	
Out of	10000 eg	ggs produ	iced, app	roximate	ely how i	many egg	gs will th	ey keep?	2 [3	3]
	•••••		•••••		•••••			•••••	• • • • • • • • • • • • • • • • • • • •	••••
	• • • • • • • • • • • • • • • • • • • •		•••••							
• • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••
•••••	•••••		•••••						•••••	····

NESA Number:_____

NESA Number: _____ SW MA RC MN SE GS

Question 29 (4 marks)

A right-angled isosceles triangle is shown below, and the unshaded sector has centre O and radius 4 cm. A semicircle C_2 is drawn with PQ as the diameter.

Show that the shaded area is the same as the area of $\triangle OPQ$.	[4]
	.

NESA I	Number:	:				
	SW	\overline{MA}	RC	MN	SE	GS

Question 30 (4 marks)

The probability density function of a continuous random variable $\,X\,$ is given by:

$$f(x) = \begin{cases} ke^{\frac{x}{2}}, & 0 \le x \le 2\\ 0, & \text{otherwise} \end{cases}$$

a) Show that $k = \frac{1}{2(e-1)}$.	[2]
	• • • • • • •
	,
rd	
b) Find the 3 rd quartile correct to 3 decimal places.	[2]
	• • • • • • •
	• • • • • • •
	• • • • • • •
	•••••
	•••••

NESA Nu	ımber:					
	SW	MA	RC	MN	SE	GS

Question 31 (6 marks)

Jack inherits \$300,000 and deposits it into a bank account that earns interest at a rate of 2.4% p.a. compounded monthly. Jack plans to withdraw \$5000 at the end of each month to supplement his lifestyle.

Let $A_{\scriptscriptstyle n}$ be his account balance after n months, just after each withdrawal.

a)	Show that $A_2 = 300\ 000 \times (1.002)^2 - 5000 \times (1.002 + 1)$.	[1]
		•••••
•••••		•••••
•••••		•••••
•••••		•••••
b)	Show that at the end of the first year Jack has \$246615.31 remaining in that account.	[2]
•••••		
•••••		
•••••		
•••••		•••••

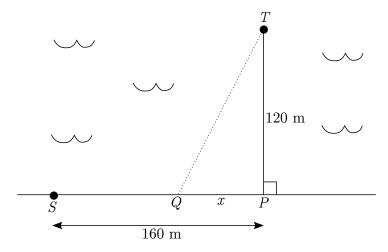
			NES	SA Number	·				
				SW	MA	RC	MN	SE	GS
month in	stead (or	rst year, Ja part thereo	of if there i	s not enoug	gh mone	y). How	many		
months d	loes it tak	te for the ac	ccount to c	completely 1	run out	of funds	5?		[3]
•••••	•••••					•••••	•••••		
									• • • • • • •
•••••	•••••		•••••	•••••					
•••••			•••••	•••••	• • • • • • • • • • • • • • • • • • • •				
									• • • • • • • •
									• • • • • • • •
			•••••	•••••			•••••		
						•••••	•••••		
									• • • • • • • • • • • • • • • • • • • •
						•••••			•••••
						•••••			
						•••••			• • • • • • • •
						•••••	•••••		

NESA N	umber:					
	SW	MA	RC	MN	SE	GS

Question 32 (4 marks)

Beth the chess prodigy has a 85% chance of winning a game when playing against non-master level players, but only a 35% chance of winning when playing against master level players. At a competition there are 80 other players and 10 of them are master level.

One of those 80 players is selected at random to play against Beth.


By considering a probability tree, or otherwise, find the probability that Beth plays a master level player given that she wins the game. [4]

•••••		 ••••••	•••••	•••••	••••••
•••••	•••••	 •••••		•••••	
			•••••		
•••••	•••••	 •••••	•••••	•••••	••••••

NESA Number: ______ SW MA RC MN SE GS

Question 33 (6 marks)

NBNCo is planning to connect its substation S to an offshore tower T, which is 120 metres from the closest point P on the shore. The cost of running cable in the water is \$500 per metre, and the cost of running cable along the shore is \$350 per metre.

Let x be the distance NBNCo chooses for PQ so that cabling runs from S to Q then Q to T.

a) Show that the total cost C of cabling is given by:	[2]
$C = 500\sqrt{x^2 + 14400} - 350x + 56000$	
	•••••
	•••••

NESA	Number	:				
	SW	\overline{MA}	RC	MN	SE	GS
b) Find the value of x to the nearest metrics						[4]
					•••••	

End of Section II.

NESA	Number:					
	SW	MA	RC	MN	SE	GS

Additional Writing Space
Clearly label with question/part number.

NESA	Number:					
	CIII	1 / / /	$\mathbf{p}_{\mathbf{C}}$	MINI	$\mathbf{C}\mathbf{F}$	C°

Additional Writing Space
Clearly label with question/part number.

NESA	Number:					
	\mathbf{SW}	МΔ	\mathbf{RC}	MN	SE	GS

Additional Writing Space
Clearly label with question/part number.