STUDENT'S NAME:

TEACHER'S NAME:

2021

HURLSTONE AGRICULTURAL HIGH SCHOOL

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 4

Mathematics Advanced

General	• Preparation time – 10 minutes
Instructions	• Working time – 3 hours
	• Scanning and uploading time – 1 hour
	• Write using black pen
	• NESA approved calculators may be used
	• A reference sheet is provided in the Section I booklet
	• In questions in Section II, show all relevant mathematical reasoning and/or calculations
	• This examination paper is not to be removed from the examination centre
Total marks: 100	Section I – 10 marks (pages 2 – 6)
	 Attempt Questions 1 – 10. The multiple choice answer sheet has been provided
	• Allow about 15 minutes for this section
	Section II – 90 marks (pages 13 – 37)
	 Attempt Questions 11 – 16, writing your solutions in the spaces provided or on your own paper. There are 6 separate question/answer booklets.
	• Allow about 2 hours and 45 minutes for this section.
	Disclaimer: Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2021 HSC Mathematics

1

Advanced Examination.

Section I

10 marks Attempt Questions 1 – 10. Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1 - 10.

1.A pupil is asked to find the x-values of any possible points of inflection for the function $f(x) = 2x^3 + 12x^2 + 6x - 2$. What should his answer be?A.-1B.-2C.0D.1

2. The diagram below represents a field

What is the approximate area of the field, using four applications of the trapezoidal rule?

A. 105 m^2 B. 136 m^2

C. 210 m^2 D. 420 m^2

3. What is the value of $\int_{-3}^{2} |x+1| dx$?

A.
$$\frac{5}{2}$$
 B. $\frac{11}{2}$

C.
$$\frac{13}{2}$$
 D. $\frac{17}{2}$

4. If $\tan \theta = \frac{2}{3}$ and θ is acute, what is the exact value of $\cos \theta$?

A.
$$\frac{2}{\sqrt{5}}$$
 B. $\frac{3}{\sqrt{5}}$

C.
$$\frac{3}{\sqrt{13}}$$
 D. $\frac{2}{\sqrt{13}}$

5. The diagram below shows the graph of $f(x) = a\cos bx$

The area of the shaded region is equal to 2 units².

What is the value of $\int_{0}^{\pi} f(x) dx$? A. -4 B. -2

6. What is the natural domain of
$$f(x) = \frac{1}{e^x}$$
?

A.
$$(-\infty,\infty)$$
 B. $[0,\infty)$

C.
$$(0,\infty)$$
 D. $(-\infty,0]$

- 3 -

7. Which of the following CANNOT be a cumulative frequency polygon?

8. Which of the following graphs shows data with the largest standard deviation?

9. A particular continuous random variable *X* has the following probability density function:

 $f(x) = \begin{cases} \frac{x}{32}, & 0 \le x \le 8\\ 0, & \text{otherwise} \end{cases}$

What is the median of this function?

- A. $2\sqrt{2}$ B. 3.5
- C. 4 D. $4\sqrt{2}$

10. The weight of chicken eggs is normally distributed with mean weight of 50 g and a standard deviation of 9 g. What percentage of eggs weigh between 41 g and 68 g?

A.	95%	В.	81.5%
C.	47.5%	D.	34%

End of Section I questions

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length

 $l = \frac{\theta}{360} \times 2\pi r$

Area

$$A = \frac{\theta}{360} \times \pi r^2$$
$$A = \frac{h}{2} (a+b)$$

Surface area

 $A = 2\pi r^2 + 2\pi rh$ $A = 4\pi r^2$

Volume

$$V = \frac{1}{3}Ah$$
$$V = \frac{4}{3}\pi r^3$$

Functions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For
$$ax^3 + bx^2 + cx + d = 0$$
:
 $\alpha + \beta + \gamma = -\frac{b}{a}$
 $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$
and $\alpha\beta\gamma = -\frac{d}{a}$

Relations

$$\left(x-h\right)^2 + \left(y-k\right)^2 = r^2$$

Financial Mathematics

$$A = P(1+r)^n$$

Sequences and series

$$T_{n} = a + (n-1)d$$

$$S_{n} = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2}(a+l)$$

$$T_{n} = ar^{n-1}$$

$$S_{n} = \frac{a(1-r^{n})}{1-r} = \frac{a(r^{n}-1)}{r-1}, r \neq 1$$

$$S = \frac{a}{1-r}, |r| < 1$$

Logarithmic and Exponential Functions

$$\log_a a^x = x = a^{\log_a x}$$
$$\log_a x = \frac{\log_b x}{\log_b a}$$
$$a^x = e^{x \ln a}$$

- 7 -

Trigonometric Functions

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$$
$$\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$$
$$\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$$
$$\cos^2 x + \sin^2 x = 1$$

Compound angles

 $\sin(A + B) = \sin A \cos B + \cos A \sin B$ $\cos(A + B) = \cos A \cos B - \sin A \sin B$ $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $\text{If } t = \tan \frac{A}{2} \text{ then } \sin A = \frac{2t}{1 + t^2}$ $\cos A = \frac{1 - t^2}{1 + t^2}$ $\tan A = \frac{2t}{1 - t^2}$ $\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$ $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]$ $\cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$ $\sin^2 nx = \frac{1}{2} (1 - \cos 2nx)$ $\cos^2 nx = \frac{1}{2} (1 + \cos 2nx)$

Statistical Analysis

$$z = \frac{x - \mu}{\sigma}$$
An outlier is a score
less than $Q_1 - 1.5 \times IQR$
or
more than $Q_3 + 1.5 \times IQR$

Normal distribution

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le x) = \int_{a}^{x} f(x) dx$$
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {}^{n}C_{r}p^{r}(1-p)^{n-r}$$

$$X \sim \operatorname{Bin}(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x}p^{x}(1-p)^{n-x}, x = 0, 1, \dots, n$$

$$E(X) = np$$

$$\operatorname{Var}(X) = np(1-p)$$

8 -

Differential Calculus

Integral Calculus

Function	Derivative	$\int f'(x)[f(x)]^n dx = \frac{1}{n+1} [f(x)]^{n+1} + c$
$y = f(x)^n$	$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$	where $n \neq -1$
y = uv	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	$\int f'(x)\sin f(x)dx = -\cos f(x) + c$
y = g(u) where $u = f(x)$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$\int f'(x)\cos f(x)dx = \sin f(x) + c$
$y = \frac{u}{v}$	$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$
$y = \sin f(x)$	$\frac{dy}{dx} = f'(x)\cos f(x)$	$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$
$y = \cos f(x)$	$\frac{dy}{dx} = -f'(x)\sin f(x)$	$\int f'(x) dx = \ln \left[f(x) \right] + c$
$y = \tan f(x)$	$\frac{dy}{dx} = f'(x)\sec^2 f(x)$	$\int \frac{f(x)}{f(x)} dx - \ln f(x) + c$
$y = e^{f(x)}$	$\frac{dy}{dx} = f'(x)e^{f(x)}$	$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$
$y = \ln f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$	$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$
$y = a^{f(x)}$	$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$	$\int \frac{f'(x)}{dx} = \frac{1}{\tan^{-1} \frac{f(x)}{dx}} + c$
$y = \log_a f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$	$\int a^2 + [f(x)]^2 \qquad a \qquad a$
$y = \sin^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$
$y = \cos^{-1} f(x)$	$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - \left[f(x)\right]^2}}$	$\int_{a}^{b} f(x) dx$ $b - a \left[f(x) + f(x) + 2 \right] f(x) + 2 \left[f(x) + 2 \right] f(x)$
$y = \tan^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$	$\approx \frac{1}{2n} \left\{ f(a) + f(b) + 2 \left\lfloor f(x_1) + \dots + \right\rfloor \right\}$ where $a = x_0$ and $b = x_n$

 $dx = -\cos f(x) + c$ $dx = \sin f(x) + c$ $dx = \tan f(x) + c$ $=e^{f(x)}+c$ f(x) + c $=\frac{a^{f(x)}}{\ln a}+c$ $-dx = \sin^{-1}\frac{f(x)}{a} + c$ $lx = \frac{1}{a} \tan^{-1} \frac{f(x)}{a} + c$ $\int v \frac{du}{dx} dx$ $f(b) + 2\left[f(x_1) + \dots + f(x_{n-1})\right]$

- 9 -

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{aligned} \left| \begin{array}{c} \underline{u} \right| &= \left| \begin{array}{c} x\underline{i} + y\underline{j} \right| = \sqrt{x^2 + y^2} \\ \underline{u} \cdot \underline{v} &= \left| \begin{array}{c} \underline{u} \right| \right| \underline{v} \left| \cos \theta = x_1 x_2 + y_1 y_2 \right|, \\ \text{where } \begin{array}{c} \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \text{and } \begin{array}{c} \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \end{aligned}$$

$$r = a + \lambda b$$

Complex Numbers

$$z = a + ib = r(\cos\theta + i\sin\theta)$$
$$= re^{i\theta}$$

 $[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta)$ $= r^n e^{in\theta}$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
$$x = a\cos(nt + \alpha) + c$$
$$x = a\sin(nt + \alpha) + c$$
$$\ddot{x} = -n^2(x - c)$$

•

Hurlstone Agricultural High School

2021 Trial Higher School Certificate Examination Mathematics Advanced

Name					Teac	cher	
			Section 1	I – Multip	ole Choice An	iswer Sheet	
Allow about Select the alt	t 15 mir ernative	nutes for t e A, B, C o	his section or D that be	est answer	s the question	. Fill in the response	oval completely.
Sample:	2	2 + 4 =	(A)	2	(B) 6	(C) 8	(D) 9
			A 🤇	C	В 🔴	СО	d O
If you think y	you hav	e made a n	nistake, pu	it a cross the	hrough the ind	correct answer and fil	ll in the new answer.
			A		В 👅	С О	d O
If you change correct answe	e your 1 er by w	nind and h riting the y	ave crosse	d out what ct and dra	t you consider wing an arroy	r to be the correct ans was follows.	wer, then indicate the
		ining the v			B		DΩ
	1.	A 🔿	B 🔿	СО	D 🔿		
	2.	A O	В 🔿	СО	D 🔿		
	3.	A 🔿	B 🔿	СО	D 🔿		
	4.	АO	ВО	СО	D 🔿		
	5.	$_{\rm A}$ \bigcirc	вО	СО	$D \bigcirc$		
	6.	АO	В 〇	СО	D 🔿		
	7.	A 🔿	B 🔿	СО	D 🔿		
	8.	АO	ВО	СО	$D \bigcirc$		
	9.	$_{\rm A}$ \bigcirc	BO	СО	D 🔿		
	10.	АO	вO	сО	D 🔿		

Section II

Name:

90 marks

Attempt Questions 11 – 16.

Allow about 2 hours and 45 minutes for this section.

Answer each question in the spaces provided. Extra working space is available after each question. If you need to use this extra space, you must clearly indicate this in the main solution space, and then clearly indicate the question number and part that you are answering in the extra space.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

2021 Mathematics Advanced Trial Examination Section II **Question 11** (15 marks)

Marks

1

1

A particle moves in a straight line and is initially 10 metres right of the origin. (a)

The velocity time graph shown below describes this motion

- What is the displacement of the particle at t_1 seconds? (i) At what time/s is the particle at rest? 2 (ii)
- At what time is the particle farthest to the right of the origin? (iii)

	y stationary points and determi	he their nature.	
sketcł ny po	the curve, showing all main fea nts of inflection.	tures, including interc	cepts, stationary p
Sketch any po	the curve, showing all main fea nts of inflection.	tures, including interc	cepts, stationary p
Sketch any po	the curve, showing all main fea nts of inflection.	tures, including interc	cepts, stationary p
Sketch any po	the curve, showing all main feants of inflection.	tures, including interc	cepts, stationary p
Sketch any po	the curve, showing all main fea nts of inflection.	tures, including interc	cepts, stationary p
Sketch any po	the curve, showing all main fea nts of inflection.	tures, including interc	epts, stationary p
Sketch any po	the curve, showing all main fea nts of inflection.	tures, including interc	cepts, stationary p
Sketch any po	the curve, showing all main fea nts of inflection.	tures, including interc	cepts, stationary p
Sketch any po	the curve, showing all main fea nts of inflection.	tures, including interc	cepts, stationary p
Sketch any po	the curve, showing all main fea nts of inflection.	tures, including interc	eepts, stationary p
Sketch any po	the curve, showing all main fea nts of inflection.	tures, including interc	eepts, stationary p
Sketch any po	the curve, showing all main fea nts of inflection.	tures, including interc	eepts, stationary p
Sketch	the curve, showing all main fea nts of inflection.	tures, including interc	eepts, stationary p

3

3

(b)

(c) A piece of string of length 6 metres is cut into two pieces.

One piece forms a square with sides x cm and the other piece forms a circle.

(i) Show that the radius (r) of the circle in terms of x is given by

$$r = \frac{3 - 2x}{\pi}.$$

(ii) Hence find the **lengths** of the two pieces of string which obtain the minimum area. Leave your answer in terms of π .

End of Question 11

1

Spare working space, Question 11.

2021 Oue	Mathem	atics Advanced Trial Examination Section II 15 marks) Name:	
L			Marks
(a)	Evalua	te $\int_1^3 x^{-2} dx$.	2
(b)	Find th	the area bounded by the x-axis and the curve $y = x^2 - 4$.	3
(c)	By first	tly differentiating $y = \sqrt{2x^2 - 4}$, find $\int \frac{x}{\sqrt{2x^2 - 4}} dx$.	3

- (d) Consider the curves $y = x^3$ and $y = 7x^2 10x$, that intersect at three points.
 - (i) Show that two of these points of intersection are (0,0) and (2,8).

(ii) Hence or otherwise, draw a sketch and calculate the area enclosed between the curves, between the two points found in (i)

5

2

End of Question 12

Spare working space, Question 12.

2021 Mathematics Advanced Trial Examination Section II Question 13 (15 marks) Name:

(a) Show that
$$\frac{\sec \theta - \sec \theta \cos^4 \theta}{1 + \cos^2 \theta} = \sin \theta \tan \theta$$
 2
(b) Solve $\sin\left(x + \frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$ for $0 \le x \le 2\pi$ 2
(c) The curve $y = f(x)$ passes through the point (0,7).

Marks

2

If its gradient function is given by $\frac{dy}{dx} = 1 - 6\sin 3x$, find the equation of the curve.

(d) A particle moves in a straight line.

At time t seconds, its distance x metres from a fixed point 0 on the line

is given by $x = 1 - \cos 2t$.

(i) Sketch the graph of x as a function of t for $0 \le t \le \pi$

3

(ii) Using your graph, or otherwise, find the times when the particle is at rest and the position of the particle at these times.

(ii)	Hence, calculate $\int_{0}^{\frac{\pi}{4}} (\sin x + \cos x)^2 dx$, leaving your answer in exact form.

End of Question 13

1

Spare working space, Question 13.

2021 Mathematics Advanced Trial Examination Section II Name: _____ Question 14 (15 marks) Marks Find derivatives for the following, with respect to *x*. (a) $\ln(x^2+2)$ (i) 1 $3^{x} e^{x}$ 2 (ii) Show that the curve $y=2x^2-\ln\left(\frac{x}{2}\right)-4$ has a stationary point at $\left(\frac{1}{2},\ln 4-3\frac{1}{2}\right)$. (b) 3

- 1 Draw a neat sketch of the area bounded by y = 3, the y-axis and the curve $y=e^{x}+1$. (ii) 1
 - (iii) Calculate the exact area drawn in part (ii).

(c) Find the co-ordinates of the point of intersection of the line y = 3 and the curve $y = e^{x} + 1$. (i)

(d) The acceleration of a particle, P, in m s⁻² is $\frac{d^2x}{dt^2} = e^{-t} + e^{-2t}$ where t is measured in seconds.

Initially, the displacement of the particle is $x = \frac{3}{4}$ m, travelling at a velocity $\frac{dx}{dt} = -\frac{3}{2}$ m s⁻¹.

(i) Show that the displacement of the particle is given by:

$$x = e^{-t} + \frac{1}{4}e^{-2t} - \frac{1}{2}.$$

(ii) Find the limit of the displacement of *P*, and hence the limit of the distance that *P* travels after t = 0.

(e) Find the value of k such that
$$\int_{-2}^{0} \frac{x^2}{x^3 - 2} dx = \ln k$$

End of Question 14

2

Spare working space, Question 14.

Marks

(a) The average monthly relative humidity (in %) of city A is shown in the stem-and-leaf plot.

Stem		L	eaf		
6	1	1	1	2	_
7	3	5	8		
8	3	7	7		

(i) Find the median and the inter-quartile range.

(ii) Draw a box-and-whisker plot to represent the data.

(b) Cole is designing a survey to ask his co-workers about their job satisfaction.

One of Cole's survey questions asked how many hours each respondent works at the company. The results are shown in the cumulative frequency histogram below.

- (i) What is the range of responses that gave the greatest 40% of hours worked?
- Use the classes in the cumulative frequency histogram to estimate the mean hours worked by the respondents surveyed.

(c) Ten students were ranked on their computer gaming ability on a new game.

Each student also calculated the number of hours that they have played the game.

The results are recorded in the table below.

Rank	1	2	3	4	5	6	7	8	9	10
Hours Played	198	143	88	102	82	94	54	36	20	12

(i) Using the axes below draw the scatterplot for the data in the table.

(ii) Calculate, to 2 decimal places, Pearson's correlation coefficient, *r*, and describe the relationship between a player's rank and the number of hours that they have played the game.

2

(iii) Find the equation of the least-squares regression line for the data given above. Give your answer correct to 2 decimal places. 2

The chart below shows the reasons that 25 customers gave for shopping at a local clothing store.

Draw the Pareto line on the chart above.

(d)

End of Question 15

Spare working space, Question 15.

2021 Mathematics Advanced Trial Examination Section II

Question 16 (15 marks)

Name: _____

Marks

3

 $f(x) = \frac{\pi}{12} \sin\left(\frac{\pi x}{6}\right), [0,6]$ Show that the function (a) (i)

is a probability density function.

(ii) For a particular continuous random variable X, find $P(X \le 4)$ for the function described in (i)

2

(b) A cumulative distribution function is given by $F(x) = \frac{x^3 - 8}{335}$. Find the interquartile range of the continuous probability distribution.

(c) A number of fish species are subject to minimum length regulations when they are caught.

ie. fish shorter than a given length must be returned to the water if caught.

Two such species are Red Snapper and Barramundi which have minimum lengths of 30 cm and 55 cm respectively.

A fishing tour operator in Northern Australia has made observations over a long period of time and found that, when measured in cm, both the variables 'R' (the lengths of caught Red Snapper) and 'B' (the lengths of caught Barramundi), are normally distributed.

'R' has a mean of 36 cm and standard deviation of 3 cm. 'B' has a standard deviation of 4 cm.

(i) Calculate the mean length of Barramundi caught if 2.5% of Barramundi caught are less than 54 cm.

2

(ii) Calculate the *z*-scores for the minimum allowed lengths for both variables, R and B, and comment upon what this means in terms of which of the two species are more likely to be returned to the water after capture.

(d) Historical data for a particular aptitude test show that its completion time has a mean of 5 minutes with a standard deviation of 30 seconds.

As part of the selection process for an available job, an employer requires candidates to complete the test faster than 90% of all applicants to progress to the next stage.

An extract from a probability table for the standard normal distribution is shown below.

				secon	d decima	l place				
Z.	+.00	+.01	+ .02	+ .03	+ .04	+ .05	+ .06	+ .07	+ .08	+ .09
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.868 <mark>6</mark>	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441

Darcy completed the aptitude test in 4 minutes and 23 seconds.

Did Darcy qualify for the next stage of selection? Justify your answer by demonstrating your knowledge of the normal distribution and the application of *z*-scores to the problem.

3

End of Question 16

End of Examination.

Hurlstone Agricultural High School

2021 Trial Higher School Certificate Examination Mathematics Advanced

 Name
 SOLUTIONS
 Teacher

Section I – Multiple Choice Answer Sheet

1.	$A \bigcirc$	В 🌰	СО	D 🔿
2.	А ●	B 🔿	СО	D 🔿
3.	A 🔿	B 〇	C ●	D 🔿
4.	АO	ВО	C ●	DO
5.	$_{\rm A}$ \bigcirc	В ●	С 🔿	DO
6.	А ●	B 🔿	СО	D 🔿
7.	A 🔿	B 🔿	СО	D 🔴
8.	АO	ВO	СО	D ●
9.	$_{\rm A}$ \bigcirc	ВO	СО	D 🌰
10.	$_{\rm A}$ O	в ●	с О	D 🔿

Solutions:

Q1

Q2 Apply Trapezoidal Rule

$$f(x) = 2x^{3} + 12x^{2} + 6x - 2$$

$$f'(x) = 6x^{2} + 24x + 6$$

$$f''(x) = 12x + 24$$

For point of inflection,

$$f''(x) = 0, \ x = -2 \quad Ans. \ B$$

$$A = \frac{12 \div 4}{2} \{6 + 10 + 2(7 + 12 + 8)\}$$

$$= \frac{3}{2}(70) = 105 \quad Ans \ A$$

Q2 An alternate solution suggestion:

A) 105 m²

Suggested solution

 $12 \times 10 = 120$ m² which is an over estimation. Thus Option A.

Q3

c)
$$\frac{13}{2}$$

Suggested Solution

Integral of $\int_{-3}^{2} |x+1| dx$ is equal to the area formed by the triangles between [-3, 2], the curve and x-axis.

So
$$\Box \int_{-3}^{2} |x+1| dx = \frac{1}{2} \times 2 \times 2 + \frac{1}{2} \times 3 \times 3 = \frac{13}{2}$$

Q4

The solution can be found using SOHCAHTOA in a right triangle, with adjacent side 3 and hypotenuse $\sqrt{13}$ using Pythagoras. Answer C

Q5

The area below the x-axis has area 4 square units, so the integral is 2-4=-2. Answer **B**

Q6

 e^x is always greater than zero, so there is nowhere that the function won't exist. Answer : A

Q7

Answer: D. Cumulative frequency is never going to be a decreasing function.

Q8

Answer: \mathbf{D} due to a lot of low scores and high scores the distance between the mean and each of the individual scores will be greater. Hence greater Standard deviation.

Q9

We find the value of X for which the integral will equal $\frac{1}{2}$

,

$$\int_{0}^{k} \frac{x}{32} dx = \left[\frac{x^{2}}{64}\right]_{0}^{k} = \frac{k^{2}}{64} \rightarrow k^{2} = 32, \ k = 4\sqrt{2} \quad (k \text{ must be positive on } \frac{x}{32} \qquad \text{Answer } \mathbf{D}$$

Q10

Values range from 1 standard deviation below to 2 standard deviations above the mean.

From a normal distribution, we have approx. 34% of scores below the mean and 47.5% of scores above the mean. Total will be 81.5%

Answer **B**

Year 12	Mathematics Advanced	2021 HSC Task 4
Answers for MC:	(1) B, (2) A, (3), (4), (5), (6),	, (7), (8)
Q1		Q2 Apply Trapezoidal Rule
$f(x) = 2x^{3}$ $f'(x) = 6x^{3}$ f''(x) = 12 For point of f''(x) = 0,	$x^{2} + 12x^{2} + 6x - 2$ $x^{2} + 24x + 6$ x + 24 of inflection, x = -2 Ans. B	$A = \frac{12 \div 4}{2} \{ 6 + 10 + 2(7 + 12 + 8) \}$ $= \frac{3}{2} (70) = 105 Ans \ A$

Outcomes Addressed in this Question		
MA 12-6 Applies appropriate differentiation methods to solve problems		
Outcome	Solutions	Marking Guidelines
MA 12-6	a) i) 10m to the right of origin. Accept 10 m ii) $0 < t < t_1$ and t_3 iii) t_3 b) i) $y = x^3 + 6x^2 + 9x$	i) 1 mark – correct ii) 2 marks for correct 1 mark for one correct iii)1 mark –correct
	$\frac{dy}{dx} = 3x^2 + 12x + 9$ = 3(x ² + 4x + 3) = 3(x + 3)(x + 1) $\frac{d^2y}{dx^2} = 6x + 12$	Part (b)(i) 3 marks for correct solution 2 marks – obtain max and min pts correct
	dx^{2} Stationary points occur when $\frac{dy}{dx} = 0$ 3(x+3)(x+1) = 0	1 mark – some progress
	x = -3 or x = -1 When $x = -3$, $\frac{dy}{dx} = 0$, $\frac{d^2y}{dx^2} = 6(-3) + 12 = -6 < 0 \text{ max at } (-3,0)$ $x = -1$, $\frac{dy}{dx} = 0$, $\frac{d^2y}{dx^2} = 6(-1) + 12 = 6 > 0 \text{ min at } (-1,-4)$ b) ii) $\frac{d^2y}{dx^2} = 0$, $\frac{d^2y}{dx^2} = 6(-1) + 12 = 6 > 0 \text{ min at } (-1,-4)$	
	$\frac{d^{2}y}{dx^{2}} = 0, \text{ then } 6x + 12 = 0, x = -2, y = (-2)^{3} + 6(-2)^{2} + 9(-2) = -2$ Point of inflection at (-2, -2) Testing $\frac{x -3 - 2 - 1}{\frac{d^{2}y}{dx^{2}} - 6 - 0 - 6}$ Concavity changes There is a point of inflection at (-2, -2) $\frac{(-3, 0)}{(-2, -2)} = -2$	Part (b)(ii) 3 marks for correct solution 1 mark for correct finding of (-2,-2) 1 mark for testing pt of inflection 1 mark for correct graph
	C) i) Total Perimeter:	Part (c)

$$4x + 2\pi r = 6$$

$$2\pi r = 6 - 4x$$

$$r = \frac{6 - 4x}{2\pi}$$

$$= \frac{3 - 2x}{\pi}$$
(i) 1 mark - correctly shown
ii) 1 mark for correct solution
1 mark for correct finding of area
1 mark for showing min area
1 mark for showing min area
1 mark for showing min area
1 mark for correct length of square and circle
1 mark for correct length of square and circle
1 mark for correct length of square and circle
1 mark for correct length of square and circle
1 mark for correct length of square and circle
1 mark for correct length of square and circle
1 mark for correct length of square and circle
1 mark for correct length of square and circle
1 mark for square and circle
1 mark a some progress
1 mark for square and circle
1 mark a some progress
1 mark for square and circle
1 mark a some progress
1 mark for square and circle
1 mark a some progress
1 mark for square and circle
1 mark a some progress
1 mark for square and circle
1 mark a some progress
1 mark for square and circle
1 mark a some progress
1 mark for square and circle
1 mark b square and circle
1 mark for square and circle
1 mark b square and circle

Year 12 Question No	Mathematics Advanced Task 4 Solutions and Marking Guidelines	Examination 2021	
MA 12-7: Applies the concepts and techniques of indefinite and definite integrals in the solutions of problems.			
Part	Solutions	Marking Guidelines	
(a)	$\int_{-\infty}^{3} r^{-2} dr - \left[-r^{-1}\right]_{-\infty}^{3}$	2 marks	
	$J_1 x a - [x]_1$	Correct Solution	
	$=-3^{-1}-(-1^{-1})$		
	$=\frac{2}{2}$	1 mark	
	3	Single error	
(b)	Roots of quadratic are -2 and 2	5 marks Correct solution	
l	Using the symmetry of an even function we have:		
	$A = \left 2 \int_{-\infty}^{\infty} (x^2 - A) dx \right $	2	
	$n = \left 2 \int_0^0 (x - t) dx \right $	2 marks Single error	
	$-2\left[1_{x^3} 4_{x}\right]^2$		
	$-2\left[\frac{3}{3},-4x\right]_{0}$	1 mark	
		that would lead to a	
	$=2\left[\frac{-4}{3}(2)^{2}-4(2)-0\right]$	correct answer	
	10^2		
	$=10\frac{1}{3}$		
		3 marks	
(c)	$d\left(\sqrt{2r^2-4}\right) = d\left(\left(2r^2-4\right)^{\frac{1}{2}}\right)$	Correct solution	
	$\frac{1}{dx}(\sqrt{2x}-4)-\frac{1}{dx}(\sqrt{2x}-4)$		
l	$(1)(4)(2^{-2}-4)^{-\frac{1}{2}}$	2 marks	
	$=\left(\frac{1}{2}\right)(4x)(2x^{2}-4)^{2}$	Single error	
	$2x^2$	1 1	
	$=\frac{1}{\sqrt{2x^2-4}}$	I mark Substantial progress	
		that would lead to a	
	·	correct answer	
	Hence, $\int \frac{x}{\sqrt{2x^2 - 4}} dx = \frac{1}{2}\sqrt{2x^2 - 4} + c$		
	$\sqrt{2x^2-4}$		

MC Solutions

Q2

A) 105 m²

Suggested solution

 $12 \times 10 = 120$ m² which is an over estimation. Thus Option A.

Q3

C)
$$\frac{13}{2}$$

Suggested Solution

Integral of $\int_{-3}^{2} |x+1| dx$ is equal to the area formed by the triangles between [-3, 2], the curve and x-axis.

So $\Box \int_{-3}^{2} |x+1| dx = \frac{1}{2} \times 2 \times 2 + \frac{1}{2} \times 3 \times 3 = \frac{13}{2}$

Year 12	Mathematics Advanced 2021	TASK 4	
Question No	b. 13 Solutions and Marking Guidelines		
Outcomes Addressed in this Question			
MA 12-5: A	pplies the concepts and techniques of periodic functions in the so	olution of problems involving	
trigonometri	c graphs.	Marking Cridolinog	
Part /	Solutions	Marking Guidelines	
Outcome			
(a)	LHS = $\frac{\sec\theta(1-\cos^4\theta)}{1+\cos^2\theta}$ $= \frac{1}{1+\cos^2\theta} \times \frac{(1-\cos^2\theta)(1+\cos^2\theta)}{1+\cos^2\theta}$	 2 marks – Correct solution 1 mark – Substantially correct 	
	$= \frac{1}{\cos\theta} \times \frac{1 + \cos^2\theta}{1 + \cos^2\theta}$ $= \frac{1}{\cos\theta} \times (1 - \cos^2\theta) \qquad show \text{ this}$ $= \frac{1}{\cos\theta} \times \sin^2\theta \qquad need \text{ this}$ $= \frac{\sin\theta}{\cos\theta} \times \sin\theta \qquad \text{to show this}$ $= \sin\theta \tan\theta$	correct	
(b)	$\sin\left(x + \frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$ acute related angle $x + \frac{\pi}{6} = \frac{\pi}{3}$ $= \frac{4\pi}{3}, \frac{5\pi}{3}$ 3rd, 4th quadrant $x = \frac{7\pi}{6}, \frac{3\pi}{2}$	2 marks – Correct solution 1 mark – Substantially correct (finds acute related angle, or equivalent merit) Also note that answering in degrees gives number outside the domain – You must answer in radians	
(c)	$\frac{dy}{dx} = 1 - 6\sin 3x$ $f(x) = x + \frac{6\cos 3x}{3} + C$ $f(0) = 0 + \frac{6\cos 0}{3} + C = 7$ $7 = 2 + C \qquad \therefore C = 5$ $f(x) = x + \frac{6\cos 3x}{3} + 5$ $f(x) = x + 2\cos 3x + 5$	2 marks – Correct solution 1 mark – Substantially correct	

(d)(i)

$$x = 1 - \cos 2t, \quad 0 \le t \le \pi$$

$$\Rightarrow \text{ amplitude} = 1, \text{ period} = \pi$$

$$\frac{2}{2} \qquad 3 \text{ marks} - \text{ Correct solution}$$

$$\frac{1}{2} \qquad \frac{1}{4} \qquad \frac{1}{2} \qquad \frac{3\pi}{4} \qquad \pi$$
(d)(ii)
Particle is set rest when $v = 0$
is $\frac{dx}{dt} = 0$ (stationary points on graph)
 $t = 0, \frac{\pi}{2}, \pi$
position at these times is $x = 0, 2, 0$
(e)(ii)

$$\int_{0}^{\frac{\pi}{2}} (\sin x + \cos x)^{2} dx$$

$$= \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x)^{2} dx$$

$$= \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x)^{2} dx$$

$$= \left[x + \sin^{2}x\right]_{0}^{\frac{\pi}{2}} (from (i)) \leftarrow must \text{ be used}$$

$$= \left[\frac{\pi}{4} + \left(\frac{1}{\sqrt{2}}\right)^{2}\right] - 0$$

$$= \frac{\pi}{4} + \frac{1}{2}$$
(d)(ii)

$$\frac{1}{2} \text{ marks} - 2 \text{ correct solution}$$

$$\frac{1}{2} \text{ marks} - 2 \text$$

Just FYI, the three most common issues with this question are highlighted by the three most common comments I wrote in my responses, which are below (<i>many</i> various versions of the (d)(ii) comment were used)	
This is here as a reminder that DETAIL is important. And detail is often where the marks are. Whether it's reading the detail in the question, or paying attention to detail in your solutions	
(b) domain is $0 < x < 2\pi$ ie $0 < x < 6.28$ Working in degrees, your answers/values are outside this domain. If converting to degrees for your working, you MUST also convert back to radians	
(d)(ii) The shape of the curve is vital in this question! Your graph clearly shows no horizontal gradient at pi (zero is on the edge), so that can not be considered as stationary. Had you demonstrated that you obtained these results algebraically, the 2^{nd} mark would have been awarded	
(e) Hence!!! (and no 'otherwise')> you must use part (i)	

Year 12	Mathematics Advanced 2021	TASK 4
Question No	b. 14 Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	
MA 12-6:	Applies appropriate differentiation methods to solve problems	
MA 12-7:	Applies the concepts and techniques of indefinite and definite integr	ais in the solutions of
Part /	Solutions	Marking Guidelines
Outcome		Guidelines
MA 12-6		
(a)	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	(a)(i) 1 mark: Correct
	(1) $\frac{1}{x^2+2}$	answer
	(ii)	
	$d = x^{\ln 3} e^{x} = e^{x \ln 3} e^{x} + e^{x} \ln 3 e^{x}$	(II) 2 marks: Correct
	$\frac{d}{dx}e e = e e + e \operatorname{III} 5 e$	solution including 3" in
	$=3^{x}e^{x}+3^{x}e^{x}\ln 3$	solution. 1 mark: Correct
	$-2^{x} a^{x} (1 + \ln 2)$	substitution of product rule
	=5 e (1+115)	substitution of product fulc.
(b)	1 1	
	$y' = 4x - \frac{1}{x}$ Either by solving $y' = 0$ or substituting $x = \frac{1}{2}$	(b) 3 marks: Correct
	x 2	solution clearly
	(1)	communicated.
	By substitution, show that $y\left(\frac{1}{2}\right) = \ln 4 - 3\frac{1}{2}$ showing	correct
	(1)	1 mark: Partial relevant
	utilisation of log law $-\ln \left \frac{1}{4} \right = +\ln 4$	progress towards correct
	(1, 1)	solution
	Therefore, $\left(\frac{1}{2}, \ln 4 - 3\frac{1}{2}\right)$ is a stationary point.	
NA 12 7	(2 2)	
$\mathbf{MA} 12 \mathbf{-7}$		(c)(i) 1 mark: Correct r
(0)	(i) $(1n 2 3)$	value.
	(i) $(112,3)$	
		(ii) 1 mark: Correct line,
		curve and shading.
	~	
	1 0	
	· · · · · · · · · · · · · · · · · · ·	
	а	
	a da da da "c da da da se te te te te da "	
	(iii) Area is equal to the integral between the two functions.	(iii) 2 marks – Correct
	$\int_{0}^{\ln 2} 2 \left(a^{x} + 1 \right) dx = \int_{0}^{\ln 2} 2 a^{x} dx$	solution from previous (1)
	$J_0 = 5 - (e^{-1})ax = J_0 = 2 - e^{-ax}$	(1) 1 mark: Correct integral
	$\begin{bmatrix} 2 \\ 2 \\ -x \end{bmatrix}^{\ln 2}$	statement.
	=	1 mark: Equivalent correct
	$= (2 \ln 2 - 2) - (0 - 1)$	answer from slightly
	-(2m2, 2) (0, 1)	incorrect integral.
	$= 2 \ln 2 - 1$	

(d)	(i) $\frac{dx}{dt} = -e^{-t} - \frac{1}{2}e^{-2t} + c_1$ Initial conditions: $-\frac{3}{2} = -e^0 - \frac{1}{2}e^0 + c_1 \longrightarrow c_1 = 0$ $\therefore \frac{dx}{dt} = -e^{-t} - \frac{1}{2}e^{-2t}$ $x = e^{-t} + \frac{1}{4}e^{-2t} + c_2$	 (d)(i) 2 marks: Correct solution including testing initial conditions for constants for both primitives. 1 mark: Correct solution for one of the primitives.
	Initial conditions: $\frac{3}{4} = e^0 + \frac{1}{4}e^0 + c_2 \qquad \rightarrow c_2 = -\frac{1}{2}$	
(d)(ii)	4 4 2 2 $\therefore x = e^{-t} + \frac{1}{4}e^{-2t} - \frac{1}{2}$ as required. (ii) $\lim_{t \to \infty} x = 0 + \frac{1}{4}(0) - \frac{1}{2} = -\frac{1}{2}$ So, the limiting change in displacement from the starting point is 1.25m.	(ii) 1 mark: Correct answer. Accept correct numerical expression.
(e)	(i) $\ln k = \frac{1}{3} \int_{-2}^{0} \frac{3x^{2}}{x^{3} - 2} dx$ $= \frac{1}{3} \left[\ln \left x^{3} - 2 \right \right]_{-2}^{0}$ $= \frac{1}{3} \left(\ln 2 - \ln 10 \right)$ $= \frac{1}{3} \ln \left(\frac{1}{5} \right)$ $\therefore k = \sqrt[3]{\frac{1}{5}}$	(e) 2 marks – Correct solution. 1 mark – Correct primitive statement with boundaries, or correct simplification of log law to find k.

 e^x is always greater than zero, so there is nowhere that the function won't exist. Answer : A

Multiple Choice questions

Question 7: Which of the following CANNOT be a cumulative frequency polygon?

Answer: D. Cumulative frequency is never going to be a decreasing function.

Question 8: Which of the following graphs shows data with the largest standard deviation?

Answer: \mathbf{D} due to a lot of low scores and high scores the distance between the mean and each of the individual scores will be greater. Hence greater Standard deviation.

Year 12 M	Year 12 Mathematics HSC Assessment Task 4 (Trial Examination) 2021		
Question No. 16 Solutions and Marking Guidelines			
MA12-8	solves problems using appropriate statistical processes		
0.4			
Outcome MA12-8	Solutions	Marking Guidelines	
MA12-8	(a)(i) $f(x) = \frac{\pi}{12} \sin\left(\frac{\pi x}{6}\right), [0, 6]$ For the domain $0 \le x \le 6$, $\sin\left(\frac{\pi x}{6}\right) \ge 0$ (shown below graphically), hence, $f(x) \ge 0$ $\int_{0}^{2} \frac{1}{12} \int_{0}^{2} \frac{1}{12} $	3 marks Correct solution with full reasoning/justification 2 marks Shows value of integral is equal to 1 but neglects to mention $f(x) \ge 0$. OR states $f(x) \ge 0$ with a minor error in integral. 1 mark Makes some progress towards a correct solution.	
	b		
	$f(x) \ge 0$ and $\int f(x) dx = 1$.		
MA12-8	(ii) $P(X \le 4) = \int_{0}^{4} \frac{\pi}{12} \sin \frac{\pi x}{6} dx$ $= \frac{\pi}{12} \left[-\frac{6}{\pi} \cos \frac{\pi x}{6} \right]_{0}^{4}$ $= \frac{\pi}{12} \left[-\frac{6}{\pi} \cos \frac{\pi \times 4}{6} - \left(-\frac{6}{\pi} \cos \frac{\pi \times 0}{6} \right) \right]$ $= \frac{\pi}{12} \left(-\frac{6}{\pi} \cos \frac{2\pi}{3} - \left(-\frac{6}{\pi} \cos 0 \right) \right)$ $= \frac{\pi}{12} \times -\frac{6}{\pi} \times -\frac{1}{2} + \frac{\pi}{12} \times \frac{6}{\pi}$ $= \frac{1}{4} + \frac{1}{2}$ $= \frac{3}{4}$	2 marks Correct solution. 1 mark Substantial progress towards correct solution.	

MA12-8	(b)	
	$F(x) = \frac{x^3 - 8}{x^3 - 8}$	2 marks Correct solution giving correct value
	⁽⁷⁾ 335	for IQR.
	$Q_3: 0.75 = \frac{x-6}{335}$ $Q_1: 0.25 = \frac{x-6}{335}$	1 mark
	$251.25 = x^3 - 8$ $83.75 = x^3 - 8$	Substantial progress towards correct
	$259.25 = x^3$ $91.75 = x^3$	one of O_1 or O_3 .
	$x \approx 6.38$ (2 dec. pl.) $x \approx 4.51$ (2 dec. pl.)	
	$IQR = Q_3 - Q_1$	
	= 6.38 - 4.51	
	= 1.87	
N/ 10 0	(c)(i)	
MA12-8	Using the empirical law 95% of Barramundi are within 2 standard deviations of the mean or 5% are more than 2 standard deviations	2 marks
	smaller or larger than the mean. Given the symmetry of the normal	1 mark
	distribution, 2.5% of Barramundi are smaller than 2 deviations less	Substantial progress towards correct
	than the mean.	solution, showing some knowledge of
	Hence, $54 = \mu - 2s$	the empirical law.
	$\mu = 54 + 2 \times 4$	
	= 62 cm	
	ie. Mean length of caught Barramundi was 62 cm.	
	(ii)	
MA12-8	R minimum length = 30 cm B minimum length = 55 cm	3 marks Correct solution showing z-scores for
	$z - \text{score} = \frac{x - \mu}{s}$ $z - \text{score} = \frac{x - \mu}{s}$	both species and correct and logical
	30-36 55-62	reasoning as to which species is more
	$=$ ${3}$ $=$ ${4}$	likely to be thrown back.
	=-2 $=-1.75$	Z marks Two of the three elements correct
		Reasoning based on a single incorrect
	From the z-scores and empirical law, only 2.5% of caught Red Snapper will be returned to the water because they are too small	z score is acceptable.
	(minimum length is 2 standard deviations from the mean),	I mark One of the three elements correct
	however, more than 2.5% of Barramundi will be returned to the	Correct reasoning based upon
	water as minimum length is only 1.75 standard deviations from the	incorrect z-scores is acceptable.
	water	
MA 12 0	(d)	
MA12-8	second decimal place z +.00 +.01 +.02 +.03 +.04 +.05 +.06 +.07 +.08 +.09	3 marks
	1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015	and time required to progress to next
	From the table, the z-score for an applicant that is faster than 20.070 with the score for an applicant that is faster than	stage and correct conclusion.
	that is faster than 90 15% of the other applicants is 1.28.	2 marks
	This mean qualifying time for next stage would be:	solution with one of the above
	м- и 1 20s	elements incorrect.
	$x = \mu - 1.20s$ OK $x = \mu - 1.29s$ = 5 minutes - 1.28 × 30 seconds = 5 minutes - 1.29 × 30 seconds	1 mark
	= 4 minutes 21.6 seconds = 4 minutes 21.3 seconds = 4 minutes 21.3 seconds	some progress towards correct solution with one of the elements
		correct.
	(Either answer would be acceptable. 1.28 is closer to 90%	
	probability, 1.29 ensures probability exceeds 90%)	
	Darcy's time of 4 minutes 23 seconds does not qualify her for the	
	next stage of selection.	
	(This could also be justified by coloulating Deservice - sector 27 -	
	faster than the mean	
	gives $z = 1.23$, less than the 1.28 required.)	