\qquad

Ascham School

Year 12 Mathematics Standard 2

TRIAL EXAMINATION

Date: 2 August 2019

Time: $2^{11 / 2}$ hours

General Instructions

- Reading time - 10 minutes.
- Working time $-2 \frac{1}{2}$ hours.
- Write using black pen.
- Approved calculators may be used.
- A formulae sheet is provided.

Result

Total marks - 100

Section I

15 Marks

- Attempt Questions 1-15.
- Allow about 25 minutes for this section.
- Record your answers on the multiple choice answer sheet.

Section II

85 Marks

- Attempt Questions 16-21.
- Allow about 2 hours 5 minutes for this section.
- Answer in the space provided.

Section I - Multiple Choice Answer Sheet

1	$A \bigcirc$	$B \bigcirc$	$\mathrm{C} \bigcirc$	D \bigcirc
2	A \bigcirc	$B \bigcirc$	$\mathrm{C} \bigcirc$	D \bigcirc
3	$A \bigcirc$	$B \bigcirc$	$\mathrm{C} \bigcirc$	D \bigcirc
4	A \bigcirc	$B \bigcirc$	$\mathrm{C} \bigcirc$	D \bigcirc
5	$A \bigcirc$	$B \bigcirc$	$\mathrm{C} \bigcirc$	D \bigcirc
6	$A \bigcirc$	$B \bigcirc$	$\mathrm{C} \bigcirc$	D
7	$A \bigcirc$	$B \bigcirc$	$\mathrm{C} \bigcirc$	D
8	$A \bigcirc$	$B \bigcirc$	$\mathrm{C} \bigcirc$	D
9	$A \bigcirc$	$B \bigcirc$	$\mathrm{C} \bigcirc$	D
10	$A \bigcirc$	$B \bigcirc$	$\mathrm{C} \bigcirc$	D
11	$A \bigcirc$	$B \bigcirc$	$\mathrm{C} \bigcirc$	D \bigcirc
12	$A \bigcirc$	$B \bigcirc$	$\mathrm{C} \bigcirc$	D \bigcirc
13	A	$B \bigcirc$	$\mathrm{C} \bigcirc$	D
14	A \bigcirc	$B \bigcirc$	$\mathrm{C} \bigcirc$	D \bigcirc
15	A \bigcirc	$B \bigcirc$	$\mathrm{C} \bigcirc$	D

Section I

15 marks

Attempt Questions 1-15

Allow about $\mathbf{2 5}$ minutes for this section
Use the multiple-choice answer sheet for Questions 1-15.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample
$2+4=(\mathrm{A}) 2$
(B) 6
(C) 8
(D) 9
$\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B

$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$

If you have changed your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:

1 Which statement is true for the given triangle?
(A) $x^{2}=20^{2}-18^{2}$

(B) $x^{2}=20^{2}-18^{2}+2 \times 20 \times 18 \times \cos 65^{\circ}$
(C) $\frac{x}{\sin 65^{\circ}}=\frac{18}{\sin 48^{\circ}}$
(D) $x=\frac{1}{2} \times 20 \times 18 \times \sin 65^{\circ}$

2 The results of Mathematics exam were normally distributed.
Betty gained a z-score of -2 .
What percentage of students scored better than Betty?
(A) 84%
(B) 97.5%
(C) 95%
(D) 2.5% Which line below has the equation $y=4-3 x$?

(A) Line a
(B) Line b
(C) Line c
(D) Line d

4 The equation of the graph below is:

(A) $y=3-x^{2}$
(B) $y=-x^{2}$
(C) $y=x^{2}-3$
(D) $y=x^{2}+3$

5 Grant wins $\$ 500$ and invests it 4 years at 8% p.a. interest compunded quarterly. To calculate the amount of interest earned on the investment, Grant would use:
(A) $500 \times 1.02^{16}-500$
(B) $500 \times 0.8 \times 4$
(C) $500 \times(1+0.02)^{16}$
(D) $500 \times 1.08^{4}-500$

(A)
(C)
(B)

$\cdots \quad$.
(D)

$\cdots \quad$.
$7 \quad$ What is the compass bearing of P from O ?

(A) $\mathrm{E} 30^{\circ} \mathrm{N}$
(B) $\mathrm{N} 30^{\circ} \mathrm{E}$
(C) $\mathrm{S} 120^{\circ} \mathrm{E}$
(D) $\mathrm{N} 60^{\circ} \mathrm{E}$

8 Which of the following is the fastest speed?
(A) $20 \mathrm{~m} / \mathrm{s}$
(B) $60 \mathrm{~km} / \mathrm{h}$
(C) $100 \mathrm{~m} / \mathrm{min}$
(D) $25000 \mathrm{~m} / \mathrm{h}$

9 A ship sails a distance of 50 km on a bearing of 040°.
Which expression can be used to find how far east the ship travelled?

(A) $50 \times \cos 40^{\circ}$
(B) $50 \times \sin 40^{\circ}$
(C) $\frac{50}{\sin 40^{\circ}}$
(D) $50 \times \tan 40^{\circ}$

10 For the network below, $B A D C B E A$ represents:

(A) A path
(B) An Eulerian Circuit
(C) An Eulerian Trail
(D) A cycle

11 If it is 10:35 am in Vancouver (UTC -8) what is the local time in Paris (UTC +1)?
(A) $1: 35 \mathrm{am}$
(B) $5: 35 \mathrm{pm}$
(C) $3: 35 \mathrm{am}$
(D) $7: 35 \mathrm{pm}$

12 Convert $8.5 \mathrm{~m}^{2}$ to cm^{2} ?
(A) 85
(B) 8500
(C) 850
(D) 85000

13 The Whitney Hotel in London offers the following menu options for its Christmas Lunch.

```
                    Starters
            HOMEMADE CARROT AND CORIANDER SOUP
                Served witha warw. crasty roll and butter
                    PRAWN COCKTAIL
```



```
            HOMEMADE DUCK AND PORK TERRINE
            Served with a cruaty roll and our chef'sown recipe spiced plum chutney
                    Mains
                    CHRISTMAS DINNER
            Roauted Tirkey and all the trafliconal rimminga
                    ROAST SALMON
        Served in a creawy white wine, asparagns, chive, and labster reducrion
                        BEEF MEDALLIONS
            Pan fried in a fricassee of wild mushroon and cream
                    VEGETARIAN NUT ROAST
                    Nar roasr with all the trimmings
                    Desserts
            CHRISTMAS PUDDING WITH BRANDY SAUCE
    HOMEMADE STICKY TOFFEE PUDDING & A RICH TOFFEE SAUCE
    HOMEMADE LEMON CHEESECAKE WITH MIXED FRUIT COULIS
```

How many 3-course selections are possible?
(A) 3
(B) 24
(C) 10
(D) 36

14 What is the effect of a 40% increase, followed by a 40% decrease on a sum of money?
(A) An overall increase on the original amount.
(B) An overall decrease on the original amount.
(C) No change to the original amount.
(D) Not enough information has been provided.

15 Rachel measures the length of a window to be 250 cm , correct to the nearest centimetre. What is the percentage error in her measurement?
(A) $\pm 0.002 \%$
(B) $\pm 0.004 \%$
(C) $\pm 0.2 \%$
(D) $\pm 0.4 \%$

End of Section I

Section II

85 marks

Attempt all questions
Allow about 2 hours and 5 minutes for this section
Answer each question in the space provided.
Show all relevant working in questions involving calculations.
Additional writing space is available at the back of this booklet.

Question 16 (15 marks)

a) Allison uses a dishwasher with a rating of 800 W for 2.5 hours each day. Find the daily cost of electricity for using the dishwasher if electricity is charged at a rate of 21.40 cents per kWh .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) Maddie and Annie made a seesaw as per diagram below. It is known that the weight of a person, w, varies inversely to the distance of a person to the middle of the seesaw, d.

The equation $w=\frac{k}{d}$, where k is a constant, models this situation.

i) Given that Maddie weighs 65 kg and is sitting 1.20 m away from the middle of the seesaw, find the value of the constant, k and state the equation of the relationship.
\qquad
\qquad
\qquad
\qquad
ii) Annie weighs 40 kg . Find the distance at which she needs to sit for the seesaw to work.
\qquad
\qquad
\qquad
c) Consider the network below.

i) State the number of edges in the network.
\qquad
\qquad
ii) Find the sum of the degrees of the vertices in the network?
\qquad
\qquad
iii) Write one path that includes all of the vertices.
iv) Does this network have an Eulerian trail? Explain why.
\qquad
\qquad
\qquad
\qquad
v) Find one spanning tree for this network.
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d) Monique purchased new appliances after renovating her home. The appliances depreciate at a rate of 15% per annum. After the three years, the appliances are worth \$19 770.

What was the original purchase price of the appliances? Give your answer correct to the nearest dollar.
\qquad
\qquad
\qquad
e) There are 2480 phone numbers on a list. Every $8^{\text {th }}$ number is phoned.

What type of sampling is this?

End of Question 16

Question 17 (15 marks)

a) A three-digit number is made up of the digits 4,5 and 8 . If the digits are not repeated, what is the probability that the number:
i) is even?
\qquad
\qquad
\qquad
ii) ends in 5 ?
\qquad
\qquad
\qquad
b) Given $B A C_{M A L E}=\frac{10 N-7.5 H}{6.8 M}$ calculate the $B A C$ for a 95 kilogram male who has consumed 3 standard drinks between 7 pm and 9.30 pm .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c) Mel leaves Darwin $(\mathrm{UTC}+9.5)$ at 1.40 pm on Monday and arrives in Singapore $(\mathrm{UTC}+8)$ at 4.50 pm on Monday. How long is Mel's direct flight from Darwin to Singapore?
\qquad
d) For a data set that is normally distributed and z is the standardised score, find the following using the table of standard normal distribution below:

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55966	.56360	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91308	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408

i) $P(z>1.43)$
ii) What is the probability that a randomly chosen score has a z-score that falls into the shaded areas on the diagram below?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
e) Consider the diagram below.

i) Use the cosine rule to show that $\theta=128^{\circ}$, correct to the nearest degree.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii) What is the angle of elevation of B from D.
\qquad
\qquad
\qquad
\qquad
iii) Find the bearing of D from B.
\qquad
\qquad
\qquad
\qquad
\qquad
iv) Find the length of $A C$, correct to one decimal place.
\qquad
\qquad
(2)
\qquad
\qquad
\qquad

Question 18 (15 marks)

a) The side of the square base of one of the smaller pyramids in Giza has length of 1.4 cm on the map.

The scale used is $1: 15000$.

i) What is the actual length of the side of the pyramid's base in metres?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii) Each side of the pyramid forms an isosceles triangle as per diagram on the right. Find the actual length of the slant edge of the pyramid.

edge of the pyramıa.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
iii) The ratio of base edges of the
 smaller to larger pyramids are in the ratio 7:13.
Find the area of the square base of the larger pyramid.
b) The volume of a sphere is $4988.92 \mathrm{~cm}^{3}$. Find, correct to 1 decimal place, the sphere's:
i) radius.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii) surface area.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c) i) Use the Trapezoidal rule to estimate the area of the reservoir in the diagram below. Answer correct to the nearest square metre.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii) What is the capacity of the reservoir in ML, if it is 2.4 m deep?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d) The table below shows the future value of an annuity with a contribution of $\$ 1$.

Period	Interest rate per period										
	$\mathbf{2 \%}$	$\mathbf{2 . 5 \%}$	$\mathbf{3 \%}$	$\mathbf{3 . 5 \%}$	$\mathbf{4 \%}$	$\mathbf{4 . 5 \%}$	$\mathbf{5 \%}$	$\mathbf{5 . 5 \%}$	$\mathbf{6 \%}$	$\mathbf{8 \%}$	
$\mathbf{1}$	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
$\mathbf{2}$	2.0200	2.0250	2.0300	2.0350	2.0400	2.0450	2.0500	2.0550	2.0600	2.0800	
$\mathbf{3}$	3.0604	3.0756	3.0909	3.1062	3.1216	3.1370	3.1525	3.1680	3.1836	3.2464	
$\mathbf{4}$	4.1216	4.1525	4.1836	4.2149	4.2465	4.2782	4.3101	4.3423	4.3746	4.5061	
$\mathbf{5}$	5.2040	5.2563	5.3091	5.3625	5.4163	5.4707	5.5256	5.5811	5.6371	5.8666	
$\mathbf{6}$	6.3081	6.3877	6.4684	6.5502	6.6330	6.7169	6.8019	6.8881	6.9753	7.3359	
$\mathbf{7}$	7.4343	7.5474	7.6625	7.7794	7.8983	8.0192	8.1420	8.2669	8.3938	8.9228	
$\mathbf{8}$	8.5830	8.7361	8.8923	9.0517	9.2142	9.3800	9.5491	9.7216	9.8975	10.6366	
$\mathbf{9}$	9.7546	9.9545	10.1591	10.3685	10.5828	10.8021	11.0266	11.2563	11.4913	12.4876	
$\mathbf{1 0}$	10.9497	11.2034	11.4639	11.7314	12.0061	12.2882	12.5779	12.8754	13.1808	14.4866	
$\mathbf{1 1}$	12.1687	12.4835	12.8078	13.1420	13.4864	13.8412	14.2068	14.5835	14.9716	16.6455	
$\mathbf{1 2}$	13.4121	13.7956	14.1920	14.6020	15.0258	15.4640	15.9171	16.3856	16.8699	18.9771	
$\mathbf{1 5}$	17.2934	17.9319	18.5989	19.2957	20.0236	20.7841	21.5786	22.4087	23.2760	27.1521	
$\mathbf{1 8}$	21.4123	22.3863	23.4144	24.4997	25.6454	26.8551	28.1324	29.4812	30.9057	37.4502	
$\mathbf{2 0}$	24.2974	25.5447	26.8704	28.2797	29.7781	31.3714	33.0660	34.8683	36.7856	45.7620	

i) Angela is saving for a holiday by contributing $\$ 500$ into an annuity that pays interest at the rate of 8% p.a., compounded quarterly. Use the table above to find how much she will have in 2 years' time.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii) Milla is saving for the same trip and needs $\$ 7000$ in total. How much more than Angela does she need to contribute each quarter, using the same annuity, if she wishes to have enough money in 2 years' time?
\qquad

Question 19 (15 marks)

a) Belinda wishes to invest her savings into shares and is considering two suitable options.

Option 1: 1500 shares which have a market price of $\$ 2.15$ each, with dividend yield of 15% and brokerage of 3%.

Option 2: 1000 shares which have a market price of $\$ 3.45$ each and pay dividend of 32 cents per share. Brokerage is 2.5%.
i) Which option will cost less in terms of brokerage?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii) Which option is cheaper in terms of total cost of purchasing shares?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
iii) Belinda chose Option 2. Find her expected dividend yield.
\qquad
\qquad
\qquad
\qquad
\qquad
iv) Belinda suddenly needs to cash in her shares. She managed to sell them at the market price of $\$ 3.55$, but had to pay a higher brokerage fee of 2.9%.

Did she made a profit or loss with this sale? Calculate this amount.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) The table below is used to represent a network.

		TO				
		P	Q	R	S	T
$\begin{aligned} & \underset{\sim}{x} \\ & \underset{y}{x} \end{aligned}$	P	-	9	-	25	15
	Q	9	-	5	12	20
	R	-	5	-	30	3
	S	25	12	30	-	35
	T	15	20	3	35	-

i) Draw a weighted network that is represented by the given table.
[2]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii) Find the minimum spanning tree. Additional space provided on the next page.
\qquad
c) Tilly owns a car which she uses both in the city and in the country.

The fuel consumption rate in the city is $10.5 \mathrm{~L} / 100 \mathrm{~km}$.
When she was last in the country, she used 28L of petrol and travelled 350 kilometres.
i) Show that the fuel consumption rate in the country is $8 \mathrm{~L} / 100 \mathrm{~km}$.
\qquad
ii) Last year, Tilly drove 14000 km in the city and 20000 km in the country.

How much fuel did she use in total?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
iii) Tilly spends an average of $\$ 4500$ on fuel per year.

She is considering switching to a cheaper fuel that costs $\$ 1.30 / \mathrm{L}$. How much money she would have saved last year if she had used this cheaper fuel?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Question 20 (15 marks)

a) The cost of catering is related to the number of people attending an event, as per table below.

Number of people $-n$	5	10	15	20	25	30	35	40	45	50
Cost $-C$	65	92	110	119	143	162	175	190	204	240

i) Find, correct to 4 decimal places, Pearson's correlation coefficient, r.

ii) Calculate the mean and standard deviation of the number of people, \bar{x}_{n} and σ_{n}. Give your answers correct to 2 decimal places.
\qquad
\qquad
\qquad
\qquad
iii) Calculate the mean and standard deviation of the cost, \bar{x}_{C} and σ_{C}, correct to 2 decimal places.
\qquad
\qquad
\qquad
\qquad
\rightarrow
iv) Show that the equation of the least-squares line of best fit is given by $C=3.57 n+51.83$.
\qquad
v) Use the equation to calculate the cost of catering for a hundred people.
\qquad
\qquad
\qquad
\qquad
b) A speed camera on the road in outback records car speeds and the results are normally distributed with mean speed of $65 \mathrm{~km} / \mathrm{h}$ and standard deviation of 15 km / h.

Complete the diagram below by entering the appropriate values in the red boxes.

i) What percentage of drivers drive at a speed between $35 \mathrm{~km} / \mathrm{h}$ and $80 \mathrm{~km} / \mathrm{h}$?
\qquad
\qquad
\qquad
\qquad
\qquad
ii) Millie was faster than 16% of all drivers. What was her speed?
\qquad
\qquad
\qquad
\qquad
\qquad
iii) Given that the speed limit is $70 \mathrm{~km} / \mathrm{h}$, what percentage of drivers recorded will be fined for exceeding the speed limit? Refer to the standard normal distribution table on the next page.
\qquad

Standard normal distribution table

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 50000	. 50399	. 50798	. 51197	. 51595	. 51994	. 52392	. 52790	. 53188	. 53586
0.1	. 53983	. 54380	. 54776	. 55172	. 55567	. 55966	. 56360	. 56749	. 57142	. 57535
0.2	. 57926	. 58317	. 58706	. 59095	. 59483	. 59871	. 60257	. 60642	. 61026	. 61409
0.3	. 61791	. 62172	. 62552	. 62930	. 63307	. 63683	. 64058	. 64431	. 64803	. 65173
0.4	. 65542	. 65910	. 66276	. 66640	. 67003	. 67364	. 67724	. 68082	. 68439	. 68793
0.5	. 69146	. 69497	. 69847	. 70194	. 70540	. 70884	. 71226	. 71566	. 71904	. 72240
0.6	. 72575	. 72907	. 73237	. 73565	. 73891	. 74215	. 74537	. 74857	. 75175	. 75490
0.7	. 75804	. 76115	. 76424	. 76730	. 77035	. 77337	. 77637	. 77935	. 78230	. 78524
0.8	. 78814	. 79103	. 79389	. 79673	. 79955	. 80234	. 80511	. 80785	. 81057	. 81327
0.9	. 81594	. 81859	. 82121	. 82381	. 82639	. 82894	. 83147	. 83398	. 83646	. 83891
1.0	. 84134	. 84375	. 84614	. 84849	. 85083	. 85314	. 85543	. 85769	. 85993	. 86214
1.1	. 86433	. 86650	. 86864	. 87076	. 87286	. 87493	. 87698	. 87900	. 88100	. 88298
1.2	. 88493	. 88686	. 88877	. 89065	. 89251	. 89435	. 89617	. 89796	. 89973	. 90147
1.3	. 90320	. 90490	. 90658	. 90824	. 90988	. 91149	. 91308	. 91466	. 91621	. 91774
1.4	. 91924	. 92073	. 92220	. 92364	. 92507	. 92647	. 92785	. 92922	. 93056	. 93189
1.5	. 93319	. 93448	. 93574	. 93699	. 93822	. 93943	. 94062	. 94179	. 94295	. 94408
1.6	. 94520	. 94630	. 94738	. 94845	. 94950	. 95053	. 95154	. 95254	. 95352	. 95449
1.7	. 95543	. 95637	. 95728	. 95818	. 95907	. 95994	. 96080	. 96164	. 96246	. 96327
1.8	. 96407	. 96485	. 96562	. 96638	. 96712	. 96784	. 96856	. 96926	. 96995	. 97062
1.9	. 97128	. 97193	. 97257	. 97320	. 97381	. 97441	. 97500	. 97558	. 97615	. 97670
2.0	. 97725	. 97778	. 97831	. 97882	. 97932	. 97982	. 98030	. 98077	. 98124	. 98169
2.1	. 98214	. 98257	. 98300	. 98341	. 98382	. 98422	. 98461	. 98500	. 98537	. 98574
2.2	. 98610	. 98645	. 98679	. 98713	. 98745	. 98778	. 98809	. 98840	. 98870	. 98899
2.3	. 98928	. 98956	. 98983	. 99010	. 99036	. 99061	. 99086	. 99111	. 99134	. 99158
2.4	. 99180	. 99202	. 99224	. 99245	. 99266	. 99286	. 99305	. 99324	. 99343	. 99361
2.5	. 99379	. 99396	. 99413	. 99430	. 99446	. 99461	. 99477	. 99492	. 99506	. 99520
2.6	. 99534	. 99547	. 99560	. 99573	. 99585	. 99598	. 99609	. 99621	. 99632	. 99643
2.7	. 99653	. 99664	. 99674	. 99683	. 99693	. 99702	. 99711	. 99720	. 99728	. 99736
2.8	. 99744	. 99752	. 99760	. 99767	. 99774	. 99781	. 99788	. 99795	. 99801	. 99807
2.9	. 99813	. 99819	. 99825	. 99831	. 99836	. 99841	. 99846	. 99851	. 99856	. 99861
3.0	. 99865	. 99869	. 99874	. 99878	. 99882	. 99886	. 99889	. 99893	. 99896	. 99900
3.1	. 99903	. 99906	. 99910	. 99913	. 99916	. 99918	. 99921	. 99924	. 99926	. 99929
3.2	. 99931	. 99934	. 99936	. 99938	. 99940	. 99942	. 99944	. 99946	. 99948	. 99950
3.3	. 99952	. 99953	. 99955	. 99957	. 99958	. 99960	. 99961	. 99962	. 99964	. 99965
3.4	. 99966	. 99968	. 99969	. 99970	. 99971	. 99972	. 99973	. 99974	. 99975	. 99976
3.5	. 99977	. 99978	. 99978	. 99979	. 99980	. 99981	. 99981	. 99982	. 99983	. 99983
3.6	. 99984	. 99985	. 99985	. 99986	. 99986	. 99987	. 99987	. 99988	. 99988	. 99989
3.7	. 99989	. 99990	. 99990	. 99990	. 99991	. 99991	. 99992	. 99992	. 99992	. 99992
3.8	. 99993	. 99993	. 99993	. 99994	. 99994	. 99994	. 99994	. 99995	. 99995	. 99995
3.9	. 99995	. 99995	. 99996	. 99996	. 99996	. 99996	. 99996	. 99996	. 99997	. 99997

c) Ella is considering options for a personal loan of \$50 000 .

Option 1: The graph shows the amount owing on her personal loan over a period of time and monthly repayments.

Option 2: Monthly reducible personal loan taken as per table below over the period of 15 years at 7.75% p.a.

Term in years	7\%	7.25\%	7.5\%	7.75\%	8\%	8.25\%	8.5\%
5	\$19.8012	\$19.9194	\$20.0379	\$20.1570	\$20.2765	\$20.3963	\$20.5164
10	\$11.6108	\$11.7401	\$11.8702	\$12.0011	\$12.1328	\$12.2653	\$12.3985
15	\$8.9883	\$9.1286	\$9.2701	\$9.4128	\$9.5566	\$9.7014	\$9.8474
20	\$7.7530	\$7.9036	\$8.0559	\$8.2095	\$8.3644	\$8.5207	\$8.6782
25	\$7.0678	\$7.2281	\$7.3899	\$7.5533	\$7.7182	\$7.8875	\$8.0522
30	\$6.6530	\$6.8218	\$6.9921	\$7.1641	\$7.3377	\$7.5127	\$7.6891

Find which option is better for Ella by considering the total amount of interest charged and the total Ella can save over the term of the loan.
\qquad

Question 21 (10 marks)

a)

Future value of an annuity

$$
F V=a\left\{\frac{(1+r)^{n}-1}{r}\right\} \quad \quad P V=a\left\{\frac{(1+r)^{n}-1}{r(1+r)^{n}}\right\}
$$

Present value of an annuity

Sophie wishes to purchase a holiday home at a price of $\$ 340000$. She has a deposit of $\$ 70000$. She will take the loan over 25 years at 9.6% p.a. compounding monthly.

For the first 5 years she wishes to reduce her expenses by making interest only repayments.
i) Find Sophie's monthly repayment for the first five years of the loan period.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii) Find Sophie's monthly repayment for the remaining loan period.
\qquad
\qquad
\qquad
\qquad
\qquad
iii) Calculate the total amount of interest Sophie pays over the loan period.
\qquad
\qquad (
\qquad
b) The annual interest rate on a credit card is 21.5% p.a.

There is an interest-free period of 55 days for purchases and a 1.5% fee for cash advances (added on at the end of the month).
Assume there is no interest-free period remaining on the opening balance.

March Statement		
Date	Details	Amount (\$)
1 Mar	Opening balance	450
7 Mar	Purchase	230
12 Mar	Cash advance	100
20 Mar	Payment	-500
25 Mar	Purchase	350

Calculate the balance on this credit card at the end of March.
-
\qquad

Extra writing space

If you use this space, clearly indicate which question you are answering.
\qquad

NSW Education Standards Authority

Mathematics Standard 1
 Mathematics Standard 2

REFERENCE SHEET

Measurement

Limits of accuracy

Absolute error $=\frac{1}{2} \times$ precision
Upper bound $=$ measurement + absolute error
Lower bound = measurement - absolute error

Length

$l=\frac{\theta}{360} \times 2 \pi r$

Area

$A=\frac{\theta}{360} \times \pi r^{2}$
$A=\frac{h}{2}(a+b)$
$A \approx \frac{h}{2}\left(d_{f}+d_{l}\right)$

Surface area

$A=2 \pi r^{2}+2 \pi r h$
$A=4 \pi r^{2}$

> Volume
> $V=\frac{1}{3} A h$
> $V=\frac{4}{3} \pi r^{3}$

Trigonometry

$\sin A=\frac{\text { opp }}{\text { hyp }}, \quad \cos A=\frac{\text { adj }}{\text { hyp }}, \quad \tan A=\frac{\text { opp }}{\text { adj }}$
$A=\frac{1}{2} a b \sin C$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

Financial Mathematics

$F V=P V(1+r)^{n}$

Straight-line method of depreciation
$S=V_{0}-D n$

Declining-balance method of depreciation

$S=V_{0}(1-r)^{n}$

Statistical Analysis

An outlier is a score
less than $Q_{1}-1.5 \times I Q R$
or
more than $Q_{3}+1.5 \times I Q R$
$z=\frac{x-\bar{x}}{s}$

Normal distribution

- approximately 68% of scores have z-scores between -1 and 1
- approximately 95% of scores have z-scores between -2 and 2
- approximately 99.7% of scores have z-scores between -3 and 3

