

Student Number

2019 YEAR 12 TRIAL HSC EXAMINATION

Mathematics Standard 2

Staff Involved:

1PM FRIDAY 9 AUGUST

- · RJW*
- JZT
- AXD
- JWH
- VAB

Number of copies: 160

General Instructions

- Reading time 10 minutes
- Working time $2\frac{1}{2}$ hours
- Write using black pen only.
- NESA approved calculators may be used.
- A Reference sheet is provided.
- In Questions 16 20, show relevant mathematical reasoning and/or calculations.
- Write your Barker Student Number on this page and on pages 7 28.

Total marks - 100

Section I

Page 2-6

15 marks

- Attempt Questions 1 15
- Allow about 25 minutes for this section.

Section II

Pages 7 - 26

85 marks

- Attempt Questions 16 20
- · Allow about 2 hours 5 minutes for this section

Section I

15 marks

Attempt Questions 1 - 15

Allow about 25 minutes for this section

Use the multiple-choice answer sheet for Questions 1-15.

Choose the best response and fill in the corresponding response oval completely.

- 1 The number of significant figures in the number 5.081×10^2 is:
 - (A) 3
 - (B) 4
 - (C) 5
 - (D) 6
- 2 Simplify 11x 2(3x + 2).
 - (A) 5x + 4
 - (B) 5x 4
 - (C) 6x 4
 - (D) 5 + 4x
- 3 The mean of a set of three scores is 11. A fourth score is then included.

The new mean of the four scores is 10. What was the fourth score?

- (A) 9
- (B) -1
- (C) 7
- (D) -9
- 4 Marcus buys a jeep for \$27 500 and the declining balance rate of depreciation is 14% p.a. What is the salvage value of the car after six years?
 - (A) \$4 400.00
 - (B) \$11 125.60
 - (C) \$16 374.40
 - (D) \$23 100.00

- 5 What is the exact volume of the cone?
 - (A) $12\pi \text{ cm}^3$
 - (B) $15\pi \text{ cm}^3$
 - (C) $20\pi \text{ cm}^3$
 - (D) $60\pi \text{ cm}^3$

- 6 Lily works as a florist assistant 4 days a week for the following hours and rates:
 - 8 hours on Thursday at normal rate
 - 7 hours on Friday at normal rate
 - 5 hours on Saturday at time-and-a-half
 - 3.5 hours on Sunday at double-time

On which day does she earn the highest pay?

- (A) Thursday
- (B) Friday
- (C) Saturday
- (D) Sunday
- 7 Sophie measures her height to be 1.66m correct to the nearest centimetre.

What is the percentage error in her measurement?

- (A) 0.003%
- (B) 0.006%
- (C) 0.3%
- (D) 0.6%

8 The table shows the average energy used, in kilojoules per kilogram of body mass, by a person walking for 30 minutes at different speeds.

Walking speed	Energy used in 30 minutes
3 km/h	5.53 kJ/kg
5 km/h	7.37 kJ/kg

Cameron, who weighs 70 kg, drinks a regular hot chocolate made with full cream milk. It contains 83 kilocalories.

For approximately how long must Cameron walk at 5 km/h to burn off the energy contained in the hot chocolate? (1 kilocalorie = 4.184 kJ)

- (A) 20 minutes
- (B) 25 minutes
- (C) 45 minutes
- (D) 120 minutes
- 9 Travis bought a home entertainment system for \$2500.

He paid 10% deposit and then paid 24 monthly instalments of \$122.

The store charged simple interest on the balance.

Determine the rate of simple interest the store charged (in % p.a.).

- (A) 14%
- (B) 15%
- (C) 27%
- (D) 30%
- 10 Which equation expresses b as the subject of the formula $A = \frac{h}{2}(a+b)$?

$$(A) \quad b = A - \frac{ha}{2}$$

(B)
$$b = A - \frac{h}{2} - a$$

(C)
$$b = \frac{Ah}{2} - a$$

(D)
$$b = \frac{2A}{h} - a$$

11 The organisation of a school formal involves the activities A to L. The diagram shows these activities and their completion time in days.

The minimum completion time for the activities is 24 days.

The critical path for the project is:

- (A) A-B-E-J-L
- (B) A-C-G-L
- (C) A-D-F-K
- (D) A-D-F-H-L

The table shows the **future value** of \$1 compounding at various interest rates and time periods.

	Interest rate per period on \$1									
Period	4%	5%	6%	7%	8%	9%	10%			
1	1.0400	1.0500	1.0600	1.0700	1.0800	1.0900	1.1000			
2	1.0816	1.1025	1.1236	1.1449	1.1664	1.1881	1.2100			
3	1.1249	1.1576	1.1910	1.2250	1.2597	1.2950	1.3310			
4	1.1699	1.2155	1.2625	1.3108	1.3605	1.4116	1.4641			
5	1.2167	1.2763	1.3382	1.4026	1.4693	1.5386	1.6105			
6	1.2653	1.3401	1.4185	1.5007	1.5869	1.6771	1.7716			

What is the *interest* paid on \$75 000 invested at 10% p.a. interest compounded half-yearly for two years?

- (A) \$15 750.00
- (B) \$16 162.50
- (C) \$90 750.00
- (D) \$91 162.50

13 What is a correct expression for x in triangle ABC?

(A)
$$x = \frac{36}{\sin 61^{\circ}} \times \sin 78^{\circ}$$

(B)
$$x = \frac{36}{\sin 61^{\circ}} \times \sin 41^{\circ}$$

Not to scale

(C)
$$x = \frac{27}{\sin 41^{\circ}} \times \sin 61^{\circ}$$

(D)
$$x = \frac{27}{\sin 78^{\circ}} \times \sin 41^{\circ}$$

14 What is the gradient of the following line?

(B)
$$-4$$

(C)
$$-\frac{4}{3}$$

Rhys is in hospital and is to receive a dose of 5g of a drug. The concentration of the drug in a hospital drip is 2mg/mL.

How many millilitres of the drug will the doctor need to administer to Rhys?

- (A) 2.5 mL
- (B) 25 mL
- (C) 250 mL
- (D) 2 500 mL

End of Section I

6

2019 TRIAL HSC EXAMINATION

Mathematics Standard 2

Section II

85 marks

Attempt Questions 16 - 20

Allow about 2 hours and 5 minutes for this section.

Answer the questions in the spaces provided.

Your responses should include relevant mathematical reasoning and / or calculations.

Extra writing space is provided on pages 27 and 28. If you use this space, clearly indicate which question you are answering.

Write your Barker student number at the top of each page.

Please turn over

Question 16 (20 marks)

(a)	A can of coke currently costs \$1.80.	1
	If inflation averages 3% p.a, what will a can of coke cost in 20 years?	

(b)	Serena is driving on the freeway. Her reaction time is 0.70 seconds and she travels	1
	at the speed limit of 100 km/h. Determine her stopping distance on the freeway correct to 1 decimal place.	
	$d = \frac{5Vt}{18} + \frac{V^2}{170}$ $d = \text{stopping distance in metres } V = \text{velocity in km/h} $ $t = \text{reaction time in seconds}$	
(c)	$Solve \frac{2x+5}{3} = x - 1$	2
		N.W.
		1140
		••
		6.6
		57

Que	stion	16 (conti	nued)						St	udent	Numbe	er
(d)	The The	Fellowsh Two Tov	to host a "Lord of t nip of the ring has a wers has a runtime of f the King has a rur	runtime of of 2 hours a	178 m and 59	inutes. minute						2
			is mates start watch s, what day and tim					ere are	no inte	erlude l	oreaks	
	****	*******	********	******			*******	*******			****	
				*********							•••••	
	*****		-			******		totoronana.				
	••••										•••••	
(e)	Calc	ulate the	dividend on 4800 s	hares with	a mark	et price	of \$2.	10 per	share i	f the		1
	divid	dend yiel	d is 3.8%.									
	••••											
				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,							
	20.0000		************	***********	*******						110202	
(f)	The	results of	a survey of the nur	nber of mal	les and	female	es who	smoke	are sho	own he	1037	
(1)	1110	10001100 01	a barrey of the har				75 11110			D WII 00	10 11.	
			6	Males	F	Tennales	-	Total				
			Smokers Non-smokers	4027 8321		4426 7462		8453 15 783				
			Total	12 348		11 888	-	24 236				
			10141	12 540		11 000		24 230				
	(;)	Whatma	anomita ao afitha ann	warrad fama	laa aus			4 4	- 7 4	`	1	
	(i)	wnat pe	ercentage of the sur	veyed feina	nes are	smoke	rs? (Ct	orrect	3 Z a.p.	.)	1	L
		*******		**********	••••••							
	(::)	W/lack as a		form of	-2 (C-		0 4 \				7	
	(ii)	w nat pe	ercentage of smoker	s are temai	er (Co:	rrect to	2 a.p.,)			1	L
		*******	*************	**********				*******				

Question 16 (continued)

(g) Tai took out a loan of \$120 000 at an interest rate of 6% p.a. compounded monthly.

He made monthly repayments (R) of \$1250. The table shows the progression of Tai's balance

for the first 5 months.

Months	Principal (P)	Interest (I)	P+I	P + I - R
1	120 000.00	600.00	120 600.00	119 350.00
2	119 350.00	596.75	119 946.75	118 696.75
3	118 696.75	593.48	119 290.23	118 040.23
4	118 040.23	590.20	118 630.43	117 380.43
5	A	В		C

(i)	What is the monthly interest rate?	1
(ii)	Calculate the values of A , B and C .	3
(iii)	By what percentage had Tai reduced the principal of the loan at the end of 5 months? (Correct to 1 decimal place)	2

Question 16 continues on page 11

		l i	
1			l.

Student Number

1

Question 16 (continued)

(h) The network diagram below shows the distances between seven villages in a valley.

(i) Complete the unshaded spaces in the table to represent this network.

	A	В	С	D	Е	F	G
A	 0:	25	: . .	-	:= 0	32	
В		-			-	32	16
С			*		-	26	*
D				9.50		-	
Е					-		21
F						4	
G							

(ii)	Is the network traversable? Justify your answer.	1

Question 16 continues on page 12

Question 16 (continued)

(i) Harriet earned \$106 000 as a lawyer. She also earned \$8 450 through bank interest and her various investments. She claimed \$14 800 in tax deductions for the year.

Taxable income	Tax on this income
0 - \$18,200	Nil
\$18,201 – \$37,000	19c for each \$1 over \$18,200
\$37,001 – \$90,000	\$3,572 plus 32.5c for each \$1 over \$37,000
\$90,001 – \$180,000	\$20,797 plus 37c for each \$1 over \$90,000
\$180,001 and over	\$54,097 plus 45c for each \$1 over \$180,000

(1)	Calculate ner taxable income.	1

(ii)	Using the table above, calculate her income tax payable for the year.	1
(iii)	Harriet paid \$22 450 in PAYG tax instalments throughout the year.	1
	Can she expect to have a tax refund or tax debt at the end of the year?	
	How much will it be? Assume there is no Medicare Levy to be paid.	

			-
			9

Question 17 (17 marks)

Student Number

(a) A yacht race follows the triangular course shown in the diagram below. The course from P to Q is 1.8 km on a bearing of 058°. At Q the course changes direction. The course from Q to R is 2.7 km and $\angle PQR = 74^{\circ}$

(i)	Indicate on the diagram the 058° bearing from P to Q and use it to determine the bearing of P from Q ?	1
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
(ii)	What is the distance from R to P ? (correct to 2 decimal places)	2

(iii)	The area inside this course is set as a 'no-go zone' for the other boats while the race is on. What is the area of the 'no-go zone'? (correct to 2 decimal places)	1

(b) Adam is attending a function, which goes from 8 pm until midnight. He plans to have five standard drinks throughout the evening. Adam is 68 kg and is on his full license.

$$BAC_{\text{male}} = \frac{10N - 7.5H}{6.8M}$$

OI

$$BAC_{\text{female}} = \frac{10N - 7.5H}{5.5M}$$

- N is number of standard drinks consumed
- H is number of hours of drinking
- M is person's mass in kilograms

(i)	What would Adam's blood alcohol content (BAC) be at midnight?	2
	Answer correct to three decimal places.	
(ii)	The legal BAC limit for full license drivers is 0.05.	3
	Adam wants to know the earliest time he could drive in the situation above.	
	By rearranging one of the above equations, determine (to the nearest minute)	
	at what time is the earliest he can drive.	

1	l.			11		1 1
Ni .	E	D S	10	Ki i,		!!
	V 1					

Student Number

Question 17 (continued)

(c)	The weekly rental on a house is shared by a number of people. The rent per person (R) varies
	inversely with number of people (N) living in the house and is given by:

$$R=\frac{k}{N}$$

	(1)	There are currently 3 occupants who each pay \$280 per week.	1
		Determine the constant of variation (k).	
	(ii)	How much would each person pay if there were 5 occupants?	1
(d)	Wha	t is the future value of \$1650 if it is invested for 3 years at 8% p.a. interest	2
	com	pounded quarterly? Answer correct to the nearest dollar.	

Question 17 continues on page 16

(e) The scale diagram shows the aerial view of a block of land bounded on one side by a road. The length of block, AB, is known to be 90 metres.

(i)	Show the scale is 1:2000.	1
(ii)	Show that the approximate area of the block of land, using three applications	3
	of the trapezoidal rule is 4350 square metres.	

		/	
1			
	l .		

Student Number

Question 18 (17 marks)

(a) A senior basketball team went on an intensive training camp. At the beginning of the camp each player was given 50 attempts to shoot goals. The number of successful shots were recorded. At the end of the camp each player was again given 50 shots at goal and the number of successful shots was recorded.

Number of successful shots				
Beginning of camp		End of camp		
	0			
94221	1	7		
55422	2	9		
55420	3	14899		
	4	11124468		

(i)	State the mode for the end of camp data set.	1
(ii)	State the median for the beginning of camp data set.	1
(iii)	What is the IQR for the end of camp data set?	2
(iv)	Is 17 an outlier for the end of camp data set?	1
	Justify your answer with appropriate calculations.	

Question 18 continues on page 18

(b) Charlotte plays a game involving a spinner that can land on one of three colours, as shown. Red occupies half of the spinner.

(ii) Determine the probability of spinning blue twice. 2

-							
				ľi l			1
1.			11			II Y	
- 11						n i	
- 11	1	l l				n II	
- 1		11					

Student Number

Question 18 (continued)

(c) The network below shows the road distances in kilometres between seven towns labelled *A*, *B*, *C*, *D*, *E*, *F*, *G*. To establish a cable network for communications, it is proposed to put the cable underground beside the existing roads.

- (i) Show the minimum spanning tree on the diagram (by highlighting or emboldening) 1 that ensures all the towns are connected to the network and minimises the amount of cable used.
- (ii) What is the minimum length of cable required here if back-up links are not considered necessary; that is, there are no loops in the cable network?
- (iii) A worker is at town A and needs to get to town E. Determine the shortest path.

Question 18 continues on page 20

(d) Mr Plummer makes pastries. The fixed cost of production is \$a per day whilst the production cost is \$b per pastry. The maximum daily production is 120 pastries a day.

The graph representing the daily **production costs** (\$) for **n** pastries is shown below:

(i) By referring to the graph, state the values of a and b. 2 (ii) Mr Plummer sells the pastries for \$4 each. Write an equation representing the income \$I made for selling n pastries. 1 (iii) Draw the line of income on the graph. 1 (iv) How many pastries must be sold each day to break even? 1 (v) How many pastries must be sold to make \$100 profit? 1

		l l	
1 1	1 1	10 10	
1 1	1 1	L L L	
1 4	ls II	E E	
1 1	i ii	In all o	1 1

Question 19 (20 marks)

Student Number

(a) The network diagram shows the traffic flow capacity, in vehicles per hour, along roads when travelling from Pymble (P) to Wahroonga (W) in morning peak hour.

(i) Find the maximum flow from P to W

(ii) Show the flow along the edges to achieve the maximum flow.

(iii) One road is to be widened to increase its capacity, but the direct road from P to W (with 300 vehicles per hour capacity) cannot be changed. Which other road's capacity should be increased and by how much will it increase the maximum flow? Give reasons. 2

(b) The area (A) of a rectangular yard with a length of x metres is given by the formula: A = 30x(15-x) where A is in square metres. The graph of A against different values of x is shown below.

(i) Complete the following table of values.

 x
 0
 5
 10
 15

 A
 15
 10
 15

2

(ii) What is the value of T on the graph?

.....

(iii) Calculate the maximum area of the yard.

2

2

Question 19 (continued)

(ii)

(c) A cup of coffee is made from freshly boiled water. It quickly cools such that its temperature *T* is given by the formula:

$$T = 20 + 75 \times (1.5)^{-0.2t}$$

where t is time in minutes and T is the temperature in degrees Celsius.

A graph of its temperature is given below.

(i)	Determine the value of B to the nearest degree.
	E.

Using guess and check, determine the value of C to the nearest minute.

Question 19 (continued)

(d) Connor is renovating a house. The renovation involves activities A to L.The network diagram shows these activities and their completion time in days.

(i)	Which activities immediately precede activity L?	1
(ii)	By completing the diagram above, calculate the minimum time required	2
	to complete the renovation.	
(iii)	Determine the critical path and list the activities.	1
(iv)	Connor wants to shorten the project duration by 4 days and proposes to crash	2
	activity G from 12 days duration to 8 days.	
	Will this have the desired effect? Justify your response.	

		Į .			
1					

Question 20 (11 marks)

Student Number

(a) Harry is looking to get a loan of \$220 000.

(i)	He finds he is able to borrow \$220 000 at 8% p.a. compounded annually and make repayments of \$19 500 at the end of each year. Calculate the balance of the loan after 3 years. (You may find a recurrence relationship helpful)	2

(ii) An alternative is to borrow \$220 000 at 5.4% p.a. compounded monthly.

Use the table of Present Value Interest Factors below to find the amount of his monthly repayment on this alternative loan if he were to repay it in full over 5 years.

Prese	Present value of an annuity with a contribution of \$1 at the end of each period							
D! - J			Intere	st Rate per	period			
Period	0.004	0.0045	0.005	0.0055	0.006	0.0065	0.007	
52	46.86398	46.27170	45.68975	45.11790	44.55596	44.00373	43.46101	
53	47.67329	47.05993	46.45746	45.86564	45.28425	44.71309	44.15195	
54	48.47937	47.84463	47.22135	46.60929	46.00820	45.41787	44.83808	
55	49.28224	48.62582	47.98145	47.34887	46.72784	46.11811	45.51944	
56	50.08191	49.40350	48.73776	48.08440	47.44318	46.81382	46.19607	
57	50.87840	50.17770	49.49031	48.81592	48.15425	47.50503	46.86799	
58	51.67171	50.94843	50.23911	49.54343	48.86109	48.19179	47.53525	
59	52.46186	51.71571	50.98419	50.26696	49.56370	48.87411	48.19786	
60	53.24887	52.47956	51.72556	50.98653	50.26213	49.55202	48.17337	

Question 20 continues on page 26

Question 20 (continued)

(b) The height and weight of 10 elite sportswomen are shown in the table.

Height (cm)	196	190	178	184	175	191	168	173	180	180
Weight (kg)	78	72	65	79	73	94	64	71	67	82

(i) Complete the table of values below (to 2 decimal places):

2

	Mean	Population Standard Deviation (σx)
Height (x)		8.32
Weight (y)	74.50	
		Correlation coefficient $r =$

(ii) Determine the equation of the least-squares line of best fit for this data

2

(using values correct to 2 decimal places).

••••••	***********	
*******	*****	 **********************

Least-squares line of best fit

 $y = \text{gradient} \times x + y\text{-intercept}$

gradient = $r \times \frac{\text{standard deviation of } y \text{ scores}}{\text{standard deviation of } x \text{ scores}}$

y-intercept = \overline{y} – (gradient $\times \overline{x}$)

- r is correlation coefficient
- \overline{x} is mean of x scores
- \overline{y} is mean of y scores

(iii)	Using the equation of the least-squares line of best fit, predict the height of an elite	3
	sportswoman with a weight of 85kg. Justify the accuracy of your prediction.	

.....

8	
	1
MATHS STANDARD 2	
2019 TRIAL HSC EXAMINATION	1 6 Thursday = 8 hours normal + mie
	Friday = 7 hours normal time
Section 1	Schurday = 5 x 1.5 = 7.5 hours normal
1 4 significant figures (B)	Sunday = 3-5x2= Thoors normal
(2) 110c-60c-4=	Highest pay = Thorsday (A)
5x-4 (B)	
	(7) 1.66m = 166 cm
(3) Mean = number of scores	Absolute error = to . 5 cm
3 9	****
11 = 3 sum = 33	Percentage error = 10.5 ×100
	= 0.30% (C)
10 = 4 .: SOM = 40	
Sum difference = 40-33	(8) 83 Kcab = 347.272 KJ
= 7	Energy used by Cameron = 7.37×70
fourth score = 7 (c)	= 515.9 kJ
	347.272 = 0.6731
(F) S=\$27500(1-0.14)	515.9
S=\$11725.60 (B)	
	Time needed = 0.6731 x 30 mins
(S) Volume = 3 Ah	= 20.19 mins
S voicine = 5 /W.	≈ 20 Mins (A)
$h^2 = 5^2 - 3^2$	
	@ Balance owing = \$ 2500 - deposit
N= 4 cm	= \$ 2250
Volume = 3Tr2h	Repayments = 24x \$ 122
$= \frac{1}{3} \pi (3)^{2} (4) \text{ cm}^{3}$	= \$ 2928
$= 12\pi \text{ cm}^{3} \qquad (A)$	Interest paid = \$2928 - \$2250
_ id it cin	= \$ 678
T Y	Using I= Prn
	\$678 = \$2250× C x 2
	r=15.06% p.a
	r≈ 15% pa (B)
	2 13/0 54
8 15 T	

	a Maria
	1
	Section IT
(10) $A = \frac{0}{2}(a+b)$	TO .
(x2) 2A = h(a+b)	(a) Cost = \$ 1.80 (1+0.03)20
(=h) 2A = a+b	= \$ 3.25
h = A+8	
(-a) $2A - a = b$ (b)	(1) 7 2×100×0.1 + 100
$\frac{(-a)}{h} = \frac{2A}{a} = .b \qquad (b)$	18 170
	d=78.3 m
713 (9 11 17	$(c) \frac{25c+5}{3} = 2c-1$
(1) 00 3 3 Start 100	
(13) Start A(3) (16) (16) (17) (17) (17) (17) (17) (17) (17) (17	2ac+5=3(ac-1)
12 (13) F(0) 15 15	2x+5=3x-3
F0) 15 15	$-\infty = -8$
Critical Path (no float terme) is	x = 8
A-D-F-H-L (D) · · · · · · · · · · · · · · · · · · ·
	(d) Total run time = 9 hours 17 mins
(2) FV= \$75006 x 1.2155	Finish Lime = 7:15 pm Friday
= \$91.162.5	+ 9:17
Interest = \$91162.5-\$75000	Finish Lime = 4:32 a.m. on Saturday
= \$ 16 162.5 (B)	
	(e) Dividend = 4800x\$2-10x0-038
(3 x = 36 = 27	= \$ 383.04
sin78 sin61° sin41°	
	(f)(i) 11888 × 100 = 37.23%
Either x = 36 x sin 78	(F)(1) 11888 - 12/3
Lither oc = sin61	(ii) 4426 × 100 = 52.36%
8 T X SIN78	(11) 8453
DI 3C = SIN410	6%
	(g)(i) 6/0 = 0.5% (0.005)
Rise	(ii) A = \$ 117 380.43
(14) m= Run	B=\$117380.43x0.005=\$586.90
$M = \frac{2}{4}$ (D)	C= \$(117380 = 43+586 -9) - \$1250
	= 4 116717.33
(5) 2 mg ImL	(iii) Loan reduction = \$120000-\$116717-33
5g = 5000 mg	= \$3282.67
. 5000 mg (2500 mL (D)	\$3282.67 x 100 = 2.7%
<u> </u>	4120000
	f

ži.	
THE PERSON OF A SHEET WAS ASSESSED.	
	10(5) - 7.5(4)
$\begin{pmatrix} h \end{pmatrix} \begin{pmatrix} \hat{i} \end{pmatrix}$ $\begin{pmatrix} A & 2 & C & B & E & F & O \\ A & -25 & -1 & -32 & 33 \end{pmatrix}$	(b) (i) BAC = , 6.8 (68)
C 19 - 16	
E 52 - 30	BAC = 0-04325259516
9 42	BAC= 0.043 (correct to 3 d.p)
(ii) Not teransversable; has more	(ii) $0.05 = \frac{10(5) - 1.5(H)}{6.8(68)}$
than 2 odd vertices	
	23-12 = 50-7-54
(i) Taxable Income = \$ (106000+8450)-	
= \$ 99650	3hours 35 mins = H
	Earliest drive time = 8 p.m+3h35mins
(i) Toy do allo - La (on = on) -	
(ii) Tax payable = \$20797+(99650-9000	e) x \$0.37 = 11:35 p.m
= \$ 24367.50	() () 2 2 2 3 K
	(c) (i) $280 = \frac{12}{3}$
(iii) Tax DEBT of \$ (24367.5-22450)	K=840
= \$ 1917.50	(11) R = N
(17) (a) (1) K 27 km N	R= 840 5
749 2	R= \$168
N 188 (9F (3 / 18 11 40)	12
58.	(a) FV=\$1650(1+0.02)"
	FV= \$ 2092-598
	FV= \$ 2093 (to nearest \$)
Bearing of P from Q = 180 + 58°	
= 238°	(e) (i) AB measures 4.5 cm
	AB is 9000 = 9000 cm
(ii) RP= 1.82+2.7-2(1.8)(2.7) xcos 74°	Scale is 4.5:9000
RP= 17.85080490	1: 2000
RP = 2.80 Km (correct to 2 decimal places)	(ii) A = 30 (botso) = 1650 M2
	$A_2 = \frac{30}{2} (50 + 40) = 1350 \text{ m}^2 + \frac{1}{2}$
(iii) Area= = (1-8)(2.7) sin 740	Az= 30 (40+50) = 1,350 m2
Area = 2.34 Km (correct to 2d.p)	Total area = 4350 m²
5 V 82	
THE CONTRACTOR OF THE CONTRACT	000F

_(20)	(iii)
(a) 220000= x1.08-19500	y=0.630c-39.85 becomes
(i) =\$218100	85=0.63(x)-39.85
= \$216048	DC = 198.17 cm
= \$213831-84	Height of 198-17 cm
Balance of loan = \$ 213831-84.	
	We are exchapolating and as the
(ii) (= 0.054	correlation coefficient is not
r= 0-0045	strong, this prediction is
	unreliable, not accurate
n= 5 x 12	
n = 60	E 150 E 5
2 8 9	20 at 2 at 2
Factor from table = 52-47956	
4220000	
Monthly repayment = 52-47956	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
= \$ 4192.11	
	E STE
(1) (1)	
Mean Population Standard Deviation (σ ₂)	*
Height (x) 1 & 1 - 5 8.32 Weight (y) 74.50 & - 644	
Correlation coefficient r= 0 · 6 \	21 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Cii)	5 8 2
gradient = 0.61 x 8.64 = 0.63	
0 032	
4-intercept= 74.5-(0.63x181.5)	
= -39-85	
	2 9 9 9
Equation is 4=0=63x-39.85	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
* a .	

TO THE PARTY OF TH